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irreducible representation of the Poincaré group and does not have the
possibility of Zitterbewegung in any unitarily transformed version of the
theory.
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Z1n the canonical representation, the Coulomb interaction is an algebraic
function of the position ¥ ~ !X W which is nonlocal in the eigenstates of
X. Thus the Coulomb interaction is nonlocal in the eigenstates of X. This
point of view is emphasized in Ref. 18,
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We examine a one-dimensional problem involving two interacting particles in an external field for
which the Schrédinger equation can be solved analytically for the ground state. The Hartree
approximation for this system also has a simple analytic solution of the form previously derived by
Foldy. Comparison of exact and Hartree solutions leads to precise estimates of the effect of
correlations on the binding energy and on the two-particle probability distribution.

L. INTRODUCTION

The paucity of exactly soluble realistic problems involv-
ing interacting particles in three dimensions has led to con-
sideration of more tractable one-dimensional models for
introductory pedagogical treatments of the many-body
problem. Among these, use of Dirac delta function poten-
tials has received a good deal of attention.'~* Recently, a
one-dimensional problem for two interacting particles in
the Hartree approximation was independently solved ana-
lytically by Foldy* and by Nogami et al.> The model was
shown to have close similarities to the three-dimensional
problem for the helium atom. That the one-dimensional
model with § function potentials exhibits features similar
to the three-dimensional helium atom with Coulomb po-
tentials is to be expected from the work of Herrick and
Stillinger.® They treated the helium atom in variable space
dimensions, and showed that the Coulomb potential re-
duces to a & function potential as the space dimension is
scaled to unity.

The results of Refs. 4 and 5 led us to the initial specula-
tion as to whether one could go even further and solve their
model exactly, which would provide a means of assessing
the accuracy of the Hartree method for the model. Unfor-
tunately, we soon realized that the exact solution for the
bound state wave function for the helium-like, one-dimen-
sional model is not simply expressible in terms of exponen-
tial functions, a conclusion which had already been
reached by others.>” However, at the expense of adding a
term to the two-particle interaction which essentially re-
stores a symmetry not present in the helium-like model, the
bound state wave function is easily expressible in terms of
simple exponential functions. Lost in this process is the
distinct advantage of having a close connection to a real
physical problem (the model no longer relates directly to
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helium-like atoms), but gained is a very simple bound state
solution for a two-particle interacting system which in-
cludes the particle correlations and correlation energy not
present in the Hartree approximation. So although the sys-
tem treated here suffers somewhat from the rather unphy-
sical character of the two-particle interaction introduced in
order to obtain a simple exact bound state solution, it may
still have use for pedagogical purposes since it affords a
precise comparison between Hartree and exact solutions.

In Sec. II we briefly review the Hartree solution of Refs.
4 and S for the helium-like model. A minor modification of
this treatment will later be shown (in Sec. IV) to give the
Hartree solution for an exactly soluble model.

Section III describes the modified model and its exact
bound state wave function and energy. Section IV com-
pares these with the Hartree solution for this model.

I1. THE He-LIKE MODEL IN THE HARTREE
APPROXIMATION

The model problem treated in Refs. 4 and 5 deals with
the Hamiltonian H ':

Ir:_ﬁ(al N 32)

2m \ 9x? ax32

— 86(x,) — g6(x,) + g'6 (x| — x,) (1)
representing two particles attracted to the origin with &
function potentials of strength g and repelling each other
with strength g’. With g = ze?, g’ = g/z = ¢* this Hamil-
tonian describes a one-dimensional model of a He-like ion,
in which Coulomb interactions are replaced by delta func-
tions. These functions, although very different in form
from Coulomb potentials nevertheless share an identical
virial theorem with the Coulomb potentials.* In terms of
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dimensionless variables y,, y, defined by

Vi = (mg/f)x;; i=1.2 (2)
the Hamiltonian in dimensionless energy 4,
h'=#/mg H', (3)
is
2 2
B= — _1_(3_ " _5_)
2\t W
1
— 6(y1) — 6(y) + ;5(}’1 —y). (4)

The bound state wave function in the Hartree approach is

Hywa) =@ (y1)@(»2). ()
Minimizing the expectation value of 4’ for this ¢ with re-
spect to arbitrary variations in ¢, subject to normalization
§é*(y)dy = 1, gives the Hartree equation

2
22 o+ 40 =9, ©)

T2 dy?
where 7 represents the Lagrange multiplier introduced by
the normalization constraint. Equation (6} was shown in
Refs. 4 and 5 to have the solution

¢ (y) = 2az'%ce =1 — cPe ~2eI¥) =1, 0
where
=@4z—-1)"", @)
a=t-0a g
and to correspond to the Hartree bound state energy
' 1 1
<h>—_(1‘7+1222)~ (10)

In Sec. IV we adapt these results to the modified Hamilton-
ian introduced in Sec. III.

IIT. MODIFIED HAMILTONIAN AND EXACT
BOUND STATE SOLUTION

As remarked in Sec. I, the ground state solution of the
Hamiltonian /4 ' in Eq. (4) is not expressible in terms of sim-
ple exponentials, and it does not appear possible to give a
neat closed form expression for ¥. A nice discussion of the
difficulties involved is given in Ref. 7. A precursor of such
difficulties is perhaps evident by noting a lack of spatial
symmetry for the / ’ of Eq. (4). Namely, there is a potential
trough along y, = 0 and an identical trough along y, =0,
exhibiting thus a symmetry with respect to a 7/2 rotation
in the y,, y, plane. Then, in addition, there is a potential
hill along y, = y,. For £’ to be invariant to a 7/2 rotation,
there should be an identical potential hill along y, = — y,,
which, of course is not present in Eq. (4). So one might
expect things to become simple if the missing symmetry is
restored to 4 ' by adding to it the interaction g'8( y, + y,),
giving a modified A,

__ %(% + %) — 8(3,)— &2

+(1/2)[8(y, — y2) + 8(y1 +2))] . (11)
The bound state wave function for this 4 is

Yy = [(1 - 2a)1 — )]
X e~ 121l = 1 Valgall v —yal + 12+ 32l] (12)
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which can be arrived at by at least two ways. One of these
consists of enumerating the four boundary conditions im-
posed on ¥ by the singular potential energy terms, which
require that a continuous ¥ have jump discontinuities in its
first derivative along the lines y, =0, y,=0, and
Y1 = =+, Integrating hy = €1} successively over tiny re-
gions of y, and y, enclosing each singular line one gets four
equations which are satisfied by Eq. (12) if

a=1/2z (13)
and the dimensionless energy € is
€= — (1—-1/z+1/27%). (14)

Alternatively, one can substitute Eq. (12) for ¢ into
hyY = ey and show that ¥ satisfies this equation if  and €
are as given above. This method makes use of the identities

alyl _»

dy |yl
=20(y)—1 (15)
and
2
sy, (16)
dy
which give
Fy
;?y—fz [1+2a%—258(y,)
+2a(8(y, —y5) + 8y + ¥ ¥
_ g - (.V1—Y2 }’1+}’2)¢
[l \[yi=2a| [y 4y
+2a2 Y1— )2 y1+y2 (17)

[ ¥y = 22| |31+ 22l

and a similar equation for 3°y/dy3, obtained from Eq. (17)
by interchanging y, and y,. Adding these two second de-
rivatives, the last term on the right-hand side of Eq. (17) is
seen to cancel against its counterpart in &?y/dy;, while the
two middle terms add to give — 4a, so that

3 (& + &)=+ 2222300~ 2005)
2\t
+22(6(y1—y2) +8(y1+ 3] ¢
(18)
Therefore Ay = ey, with A given by Eq. (11), is satisfied if
2a = 1/z and € = 1 — 2a + 2a?, which are the results
quoted in Egs. (13) and (14).

Using this method shows that a simple solution of the
form ¢ = ce ~!”le ~ 1 >2le*!» = will not work for the He-
like 4 ' of Eq. (4). This ¢, inserted in the Schrodinger equa-
tion 4 'y = ey requires ¢ = 1/2z and

_[——(1+a2) for y,y,>0 and y,y,<0
" l—-(1—-a)p? for y,>0,9,<0 and y,<0,p,>0.
(19)

Thus this simple exponential ¢ is not an acceptable solu-
tion for the He-like Hamiltonian A ’ since it does not corre-
spond to a single energy.
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IV. COMPARISON BETWEEN HARTREE AND
EXACT SOLUTION

The additional repulsive interaction term (1/z)5( y, + y,)
in the modified 4 of Eq. (11) adds to the Hartree expectation
value (h’) the term (1/z)f¢?*(y,)¢*( —y,) dy,. Since

)

2z — 1)

e~ 1= 1/2I»lg~ (1~ 172 3|

#%(y,) = ¢ *( — y,)from symmetry, this added term is iden-
tical to that appearing in the He-like ( 2 ') coming from the
{1/2)5( y, — y,) interaction. Consequently, the Hartree so-
lutions, Eqs. (7)-(10) are applicable to the modified Hamil-
tonian 4 by the replacement 1/z—2/z in them. The Hartree
wave function ¥y for the modified Hamiltonian is then

(20)

Yy =4 ()b (r) =

and the Hartree energy is
€y = — (1—-1/z2+1/32%. 2y

These are to be compared with exact results, from Egs. (12)
and (14):

_le—ypz-1]'"

v 2Y2%
e~ 13l g =10l gll/22 31 =32l + [ 31 +2l) (22)
and
€= —(1—1/z+ 1/22%. (23)

The energy difference, usually called the correlation ener-
gy, is

€—€y = —1/62*. (24)
From the virial theorem (7T) = — (¥')/2, and from
€= (T) + (V),therefollows (T) = — ¢, indicating that
the kinetic energy for the exact bound state is higher than
that for the Hartree solution by the factor 1/6z°. The at-
tractive part of the potential energy is given by (¥ )HF
= —2§8(y)¢*(y)dy for the Hartree solution and by
(V), = — 2fy*0,y)dy for the exact solution. A simple
calculation, using Eqs. (20) and (22) shows them to be iden-
tical: (V) =(V),= —2(1—1/z). Then, from
e=(T)+(V)and (V)= (V), + (V),, the repulsive
potential energies are found to be (V) = 1/z — 2/32%,
(V), =1/z—1/2% so the repulsive interactions are

Fig. 1. Bound state wave function in the Hartree approximation. Solid
curves are lines of constant ¥y { »,,0,)/¥y(0,0) = 0.2, 0.4, 0.6, and 0.8,
obtained from Eq. (20) for the case z = 2. The dashed squares indicate
lines of constant ¥ for the case of no interparticle interactions.
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22z 1) {1 — [1/2z—1)]e 2=V} {1 — [1/(2z—1)] e 2~ A}

{

smaller in the correlated exact state by the amount 1/32°.
Summarizing, the increase in kinetic energy required to
produce the spatial correlations in the exact ¢, equal to 1/
62, is just half of the decrease in potential energy produced
by the correlations, 1/32%, so that the net difference, — 1/
62, is the correlation energy given in Eq. (24).

To compare wave functions, we plot contour maps of
constant ¢ and ¥ choosing z = 2. Figure 1 shows lines of
constant Yy { y,,9,)/ ¥y (0,0) for the Hartree solution given
by Eq. (20), and Fig. 2 is a plot of the same ratio for the exact
solution, Eq. (22). In the absence of repulsive interactions,
(1/z—0), ¢y =e~!"le =1, and the contour maps would
have the general shape shown by the dashed squares in Fig.
1. For both Hartree and exact solutions, the contours of
constant ¢ are concave toward the origin, indicating a de-
creased probability whenever the two particles either coin-
cide (| ¥, — y,| = 0) or whenever their sum of distances
from the origin is zero (| y, + y,| = 0). For the Hartree so-
lution, the concavity is due tothe terms in the denominator
of Eq. (20), and is made evident by introducing variables
s =27y, +y,),u =2y, — p,), corresponding to a
/4 rotation in the y,,y, plane. Then, for z = 2 and for the
»1>0, y,> 0 quadrant, Eq. (20) becomes

e—s/\/z
Yy =

(25)

34+ev%/3 —2¢e~ "2 cosh u/V2

Fig. 2. Bound state wave function for the exact solution. Solid curves are
lines of constant { y,,»,)/#{0,0) = 0.2, 0.4, 0.6, and 0.8, obtained from Eq.
(22) for the case z = 2.
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Fig. 3. Exact and Hartree bound states as given by Eqs. (16} and (25),
plotted for fixed s=2"Y%y, +p,)=2"!"2 as a function of
u=2""%p —p).

indicating a minimum ¥y for fixed s (along dashed line in
Fig. 1) when u = 0 (y, = y,). In terms of s, u variables the
exact wave functions, for z= 2 and in the same y,, y,
quadrant is

1/, —_ (\/8/4)6 - 3V2s/4e\/2u/4 , (26)
again indicating a minimum ¢ for fixed s when # = 0. Fig-
ure 3 shows the dependence of both wave functions on  for
a fixed s, s = 1/v2. The minimum of the wave function at
1 = Obeing smaller for the exact ¥ than for the Hartree 1,
accounts for the smaller repulsive interaction in the exact
state.

One may also compare the single particle density P( y)
for the two solutions. For the Hartree, P( y) = ¢ *( y), while
for the exact solution, P(y) = §é *( y,y,) dy, which is easily
calculated from Eq. (22). The result of such a calculation
shows that the two densities are everywhere within a few
percent of each other, for z = 2. As expected from Figs. 1
and 2, the exact probability density extends slightly further
out than the Hartree approximation. As a result, the
“atom” size (Y )=(| y|)/2 = f§yP(y)dyis slightly larger
for the exact solution: one finds { ¥ ) = 0.417 for the exact
bound state and { ¥') = 0.411 for the Hartree approxima-
tion.
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It is shown how matrix methods in dimensional analysis can be used to convert the numerical
values and units of electromagnetic quantities from the mksa system to the Gaussian system and
vice versa. Examples are given which should convince the reader that the mentioned conversions

can be performed with very little tedium.

I. INTRODUCTION

Recently, W. J. Remillard' showed how dimensional
analysis in matrix form could be used to convert a given
amount of a physical quantity from one system of units to
another, and to change from one basic set of dimensions to
another. Though this is nicely done, in our opinion too little
emphasis has been put on the conversion between the mksa
and Gaussian systems, a job of not so rare an occurrence for
those who have the double practice of teaching and re-
search. It is the purpose of the present paper to expand on
Remillard’s presentation, though without repeating it, and
in particular to show how the matrix technique of dimen-
sional analysis enables the ‘“‘nasty” conversion factors
which arise when comparing electromagnetic quantities in
these two systems to be easily deduced.

230 Am. J. Phys. §2 (3), March 1984

II. THE mksa AND GAUSSIAN SYSTEMS OF UNITS

Asis well known, in the mksa system any physical quan-
tity is represented with the help of four independent dimen-
sions: mass(M ), length (L ), time(T '), and electriccurrent (7 ).
For example, a force has dimensions [M L T —21%,and a
capacitance [M 'L ~2T*I?).

In the Gaussian system, only three independent dimen-
sions are used to represent any physical quantity: mass (M ),
length (L ), and time (T'). For example, a force has dimen-
sions [M L T ~?] and a capacitance [M °L T°]. However,
this is not only typical of the Gaussian system; it is also true
of any CGS system. The peculiarity of the Gaussian system
lies in that the permittivity €, and permeability z, of free
space arc taken as dimensionless and put equal to unity;
whereas in the mksa system they are
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