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lines with constant scale speed c. The process of following a
dot across the screen is a simple routine well suited to the
capabilities of the microcomputer. The appropriate relativ-
istic velocity components of the photons are computed us-
ing standard formulae® and are stored in a table in the pro-
gram.

The second program, on the same disk, displays the elec-
tric field lines of a radiating dipole; see Fig. 3. There are 64
different high-resolution pictures stored in memory (the
Apple’s usual 48k memory is sufficient for this) and they
are displayed at the rate of eight pictures per second.

These programs complement the short film, “Dipole Ra-
diation.””® They contain essentially the same kinds of infor-

mation, but they give the user control of some of the param-
eters involved. They are wuseful for classroom
demonstration and for individual study.

The programs are available from the author (send an
ordinary 5-in. disk).

'R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures
on Physics (Addison-Wesley, Reading, MA, 1964), p. 11-26-4.

2P, Lorrain and D. Corson, Electromagnetic Fields and Waves (Freeman,
New York, 1970}, 2nd ed., p. 216.

3R. H. Good, Am. J. Phys. 49, 185 (1981).
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Periodic boundary conditions are usually introduced
into quantum mechanics courses in two contexts. First, for
a system in which the potential is periodic the wave func-
tion also exhibits periodicity. Second, in order to avoid the
use of continuum wave functions it is convenient to intro-
duce artificial “boundaries” so that the spectrum becomes
discrete. The continuum is obtained again in the limit that
the length of the period is made infinite.

In order to elucidate the dependence of the energy levels
on the magnitude of the bounded region it is useful to exa-
mine cases where the original problem can actually be
solved completely. The one-dimensional hydrogen atom
with a 5-function interaction is such an example which may
be useful for discussion in a quantum mechanics course.

The one-dimensional hydrogen atom with a §-function
potential has been the subject of a number of studies.' If the
wave function satisfies periodic boundary conditions one
may also determine the positive energy eigenfunctions and
eigenvalues for a repulsive §-function potential. These re-
sults are compared with those for the one-dimensional hy-
drogzen atom in an infinite square well obtained by Lapi-
dus.

Consider an electron with mass m moving in a one-di-
mensional potential well

V(x)= — Ze*8( x), (1)

where & ( x) is the Dirac delta function. The Schrodinger
equation

~(#/2myy” + V(x)¢p = E¢ (2)
has one negative energy solution,
¥ x) = (1/a)'"? exp( — |x|/a), (3)
with
E= —Z’E,= — Z’me*/2#7, (4)

where a = #/Ze*m.

. The solution (3) is obtained by using the boundary condi-
tion ¢{ x)—0 as |x|—oo. If the atom is enclosed between
boundaries separated by a distance 2L the energy of the
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atom is significantly changed for L ~a. The wave function
satisfies the boundary conditions Y{L)=¢(— L) and
YL)=v¥(—L). In addition ¢ (0)=9_(0) and
¥, (0)— ¢'_ (0) = — (2/a)y{0)because of the§ function at
the origin. The potential given in Eq. (1) is even; hence the
energy eigenfunctions are also eigenfunctions of parity.

Making use of the above conditions, the negative energy
eigenvalues are obtained from

xa = coth(«xL ), (5)
where E = — #°x*/2m, corresponding to the wave func-
tion

2a — 1 )1/2
x)={——mr—"— osh L). 6
vel0=(Frys) ©MKEFLL ©

For L—, coth(kL }—1. Then x = 1/a and one again
obtains Eq. (4). For finite values of L the energy decreases
without limit as L—0. ;

Recently Lapidus® has obtained the energy eigenfunc-
tions and eigenvalues of the one-dimensional hydrogen
atom in an infinite square well. In that case the bound state
energy levels are obtained from the relations ,

xa = tanh{«xL ). (7)

In contrast to Eq. (5) the energy increases as L decreases
and £ = 0when L = a. For L < a the energy is positive and
its value is obtained from the relation )

xa = tan(xL ). (8)

If the potential in Eq. (1) is replaced by a positive poten-
tial, the energy eigenvalues are positive. For the even parity
wave functions one must replace Eq. (5) by

xa = cot(xL ), 9)
corresponding to the wave functions

( Ragl _
vo0=(ga) HxFLL (0

where E = #k2/2m.
The odd parity wave functions are obtained by noting
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that the wave functions must vanish at the origin. Thus the
potential has no effect. The wave functions are given by

¥ x) =L ~"*sin(nwx/2L), (11)
and the energy eigenvalues are
E, = n*r*#/8mL > (12)

For a positive §-function potential the energy of the sys-
tem enclosed in an infinite square well is again given by Eq.
(8).

In the previous discussion the boundaries were placed
symmetrically at x = + L. Iftheatom islocated asymmet-
rically in an infinite square well the energy is a function of d
the distance of the atom from the origin.? But this is not so

for periodic boundary conditions; the energy is given by
Egq. (5) or Eq. (9).

Finally we note that the problem of the one-dimensional
hydrogen atom with periodic boundary conditions is actu-
ally identical to that of a particle constrained to move on a
circular path with circumference 2L, which may be solved
simply by the replacement x = R6, L = 7R, k = a/R.

'P. M. Morse and H. Feshbach, Methods of Theoretical Physics (MeGraw-
Hill, New York, 1953), p. 1644; A. A. Frost, J. Chem. Phys. 22, 1613
(1954); 1. R. Lapidus, Am. J. Phys. 37, 930 {1969); 37, 1064 (1969).

21, R. Lapidus, Am. J. Phys. 50, 563 (1982).
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The authors of “A technique for evaluating sums by
means of complex integration”’ state in reference to their
formula (12): “To our knowledge, this result has not been
published previously.” This formula, together with many
similar ones and many applications, appears in Lindelof’s
classic monograph of 1905% as formula (9) [together with
formula (2)] of Chap. III. The same material also appears in
more recent books.’

Response to letter by Yanowitch
Richard P. Leavitt and Clyde A. Morrison

Harry Diamond Laboratories, Adelphi, Maryland 20783

IR. P. Leavitt and C. A. Morrison, Am. J. Phys. 50, 1112 (1982).

2E. Lindelof, Le Calcul des Résidus et ses Applications a la Théorie des
Fonctions (Gauthier-Villars, Paris, 1905; reprinted by Chelsea, New
York, 1947).

3E.g., F. W. J. Olver, Asymptotics and Special Functions (Academic, New
York, 1974), Chap. 8.

(Received 14 October 1983; accepted for publication 14 October 1983)

One of the main results in our recent paper in this jour-
nal’ was derived for the first time many years ago in Linde-
16f’s book; we were, naturally, quite unaware of this when
preparing our manuscript. This fact was pointed out to us
by Professor Yanowitch and also in a personal communica-
tion from Professor R. P. Boas of the Mathematics Depart-
ment at Northwestern University. We thank Professors
Yanowitch and Boas for bringing this matter to our (and
the reader’s) attention. Nevertheless, one can still regard
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our article as bringing the subject of summation and ap-
proximation of sums by contour integrals to the physics
community, in which the techniques are not well known. It
is worth concluding by quoting from Professor Boas’ letter:
“Every generation must make its own discoveries.”

1R, P. Leavitt and C. A. Morrison, Am. J. Phys. 50, 1112 (1982).
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