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Exactly solvable three-dimensional scattering problem

C. Eftimiu

McDonnell Douglas Research Laboratories, St. Louis, Missouri 63166

(Received 10 August 1982; accepted for publication 30 November 1982)

Schrodinger’s equation is solved exactly for a potential vanishing outside a prolate spheroid. The
potential is then reconstructed from the first Born approximation for the scattering amplitude.

L. INTRODUCTION

Exactly solvable examples of quantum-mechanical scat-
tering problems are well known and described in most texts
on quantum mechanics. However, invariably, such exam-
ples refer either to one-dimensional problems or to cases
with spherical symmetry. Nontrivial examples which are
neither one dimensional nor with spherical symmetry are
harder to come by, particularly if they are not to be math-
ematically too elaborate. Presenting such an example is the
purpose of this article. It involves a potential of a special
form, vanishing outside a prolate spheroid. In Sec. I1, given
this potential, the direct scattering problem, consisting in
finding the scattering amplitude, is solved exactly. In Sec.
II1 it is shown that the problem can also be reversed and the
potential determined from the scattering amplitude; the
potential reconstruction presented here will involve,
though, only the Born approximation of the total ampli-
tude.

I1. DIRECT PROBLEM

Prolate spheroidal (PS) coordinates, &, 7, ¢, are defined
through their relations to Cartesian coordinates:

x=(d/2)[€* — 1)(1 — 7)]"/* cos 4,
y=d/2U&*— 1)1 - 7)]"*sin g,
z=(d/2)g,

where 1<f< w0, — 1<9<], 0<¢<27. The surfaces
& = const are prolate spheroids (generated by rotating el-
lipses about their major axes), and d is the interfocal dis-
tance. All notations relating to PS coordinates or the solu-
tions of the Helmholtz equation in PS coordinates are
taken without exception from the monograph by Flam-
mer.'
Schridinger’s equation

(2.1)

A +k9p =V 2.2)
in PS coordinates reads
1 ( d ,.» d d 2 0
—A— ¢ - 1) —+—=—{1 — ) —
P T & )ag 617( 77)317

-7 4’ )¢ 2 2

+ P =d/2)Ve, (2.3)
(€%~ 1)(1—7°) 3¢°

where ¢ = k (d /2). From the class of potentials for which

Eq. (2.3) is separable we choose

__7 g
Ve =ln o0k -6)
where 7 is a positive (coupling) constant, £,> 1 is a fixed
value of £, and & is the Heaviside function. The potential
(2.4) is not meant to describe any particular physical situa-
tion, even though one might think of some molecular forces
it could model (note the singularities at the two foci).

(2.4)
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The ¢ dependence of the solution is given by trigonome-
tric funcitons cos m¢ and sin m¢, with m an integer. The
other angular function and the radiatial function satisfy,
respectively, the equations

d d

£ n-m-Zs

dﬂ( n)dn e (77)

2

1 T - (2.5)

+ (Amle) o = <E)S,(0) = 0,

d g2_1 4 _
S =)L) (Al
— [~ PO~ £)1E +

£ -1

where 4,,, (m, n integers) are separation constants for
which there exist extensive tabulations. Equation (2.5) has
two independent solutions; the first reduces, as c—0 and
A an—n(n + 1), to the associated Legendre function P (),
while the second to Q (7). The second solution is not ac-
ceptable in this context, and the first will be denoted simply
by S,,.. (¢, 7).

The radial equation (2.6) also has two solutions, corre-
sponding to the spherical Bessel functions j,(kr) and y,(kr)
occurring in problems with spherical symmetry, and will
be denoted by R ). (c, £) and R ?, (c, &), respectively, for
1<€<&p, and by R (@, £)and R P, (a, &), where

)R,.."(f)=o, (2.6)

a=(c*—y)? (2.17)
for £>&,.> The combinations
RO, =R, +iR7,
" (2.8)

4) __ 1 R (2
R, =R, —iRE,

corresponding to the spherical Hankel functions are also of
interest. :

The solution for 1<£<£, can be written as
2 -6
S inAmnSmn (C, 77)

m,n mn

XR (r:-)n (@, &) cos m(é — ),

with coefficients 4,,,,, to be determined.
For §>¢£,,itis convenient to separate the plane-wave con-
tribution from that of the scattered wave:

(2.9)

p=e*+g, (2.10)
and, because 7—cos & and c£&—kr as r-» w0, so that
an+ 1
RO ) ~ (=L o @.11)
r—o kr

¢, can be written as
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2 - 60",‘
m,n Nmn

XR (e, §) cos m(g — ), (2.12)

again with coefficients B,,, to be determined. In Egs. (2.9)
and (2.12), N, (c) are normalization constants for the an-
gular functions which satisfy the orthogonality relations:

1
f Sl TS 11 = N0

Following the standard procedure, one expands the
plane wave in PS coordinates,

e'k’=222_i

O (1S, (€5 COS )

XS,.n(c, cos @)R D) (c, € )cos m(d — d),  (2.14)
and then matches the solutions (2.9) and (2.10) at £ = &,.
One then obtains

Ay = [RD,(c, €0) + @, R 2 (e, £0)]

¢s = 2 iannSmn (c’ 77)

(2.13)

XR V= Ya, £,)S,.(c, cOs 6;) (2.15)
and
B, =a,,S..(c cos b, (2.16)
where
a

mn

RO (c, §olR g.)n (@, &) — R (,:.jn (c, £o)R o (@, &o)

R, (c, ER U@, £o) — R L (c, EQR W, (s &)
(2.17)

The scattering amplitude identified in the asymptotic
expression of ¢, viz.,

el'kr
¢ ~ Ai(uy, u) — (2.18)
is
2 2— 50m
A (ug, u) =— @,y S (€, COS G
1 (W, u) & ;. N ( o)
XS, (c, cos @) cos m(¢ — &) (2.19)

Introduction of the phase shifts 8,,, (k ) through the rela-
tions

tan$,,, (k)= —Rea,,/Ima,,
yields 4, in the form

2-5 " -
A, (ug, u) = % 5 220 exp i3, (k)] sin 3, (k)

m,n mn

(2.20)

XS, (€, cO8 B,)S,.. (¢, cos @) cos m(p — ),
(2.21)

which generalizes the well-known expansion of the scatter-
ing amplitude in the case of spherical symmetry. While this
expansion has been obtained here for a special potential, it
is clear that its form remains the same in general, for any
potential vanishing fast enough as £&— 0. It is therefore
evident that while 4, (u,, u) is indeed a function of five var-
iables, it is in effect determined by a function of only three
variables (two discrete, m and », and one continuous, & ):
8,.,(k), whereas the potential (2.4) depends on only two
variables. This circumstance is to be compared with the
situation in the spherically symmetric case, where the po-
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tential is a function of one variable, but the scattering am-
plitude, through the phase shifts §,(k ), is determined by a
function of two variables (one discrete, /, and one contin-
uous, k).

II1. INVERSE PROBLEM

We propose now to show how the potential can be recon-
structed from the scattering amplitude. The solution to this
inverse scattering problem for one-dimensional or spheri-
cally symmetric cases has been known for some time and is
described in detail in some excellent texts.? The solution in
the general three-dimensional case has only recently been
worked out by Newton,* and the main steps to be followed
will be briefly described below.

Namely, as Newton shows, the potential ¥ (r) can be re-
constructed, in the absence of bound states, from the for-
mula

Vir)= — 2u, VK (ug, ugr, r), (3.1)

where u, is the unit vector of the direction of propagation of
the incoming plane wave [exp(ikr), k = ku,), and X is the
solution of a generalized Marchenko equation:

Kuy, s, 1) = J- d 2u(G (ug, U, 5 + uer)

+ dtG(ug, u, s+ 1)K (u, 7, r)), (3.2)
where d %u indicates two-dimensional integration over the
direction of the unit vector u(d >u = sin 8 d0 d¢ ). The input
function G is given in terms of the scattering amplitude

A (u, p):

(i — iks
Glug u, ) (4 77-2) f_ kA (e (33
The solution (3.1) requires, therefore, knowledge of the
scattering amplitude for all k£ and all directions of the in-~
coming plane wave u,, as well as for all directions of the
outgoing spherical wave u.

This procedure can be significantly simplified in the
present case, due to the fact that the scattering amplitude is
available here as a (Born) expansion in powers of 7°. Indeed
in this case the function G of (3.3) is also available as a series
in powers of ¥, and so is K (u, 5, r) if one seeks it as such in
solving Eq. (3.2). But, because the potential is linear in 7,
only the first Born approximation can contribute to Eq.
(3.1). In other words, as one sets s = u,-r in the Born series
of K (ug, s, 1), all terms, except the first, must vanish. That
this vanishing actually happens has been checked in the
case of a spherically symmetric exactly solvable problem.’
Clearly, the Born expansion of the scattering amplitude is
not generally available in inverse problems. In this theo-
retical case though, there is no problem in recasting the
series (2.19) as a series in powers of 72 and then recognize
that only its first term contributes to Eq. (3.1):

Vir)= ﬁ uo-V f dk kduA " — ug, u)

Xexplik (u + uy)r}, (3.4)
where 4 {!' is the first Born approximation to the scattering
amplitude. This approximation can be easily retrieved
from the exact result (2.19) by noting first that, because of
Eq. (2.6), the numerator of a,,,, in Eq. (2.17) can be written
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as
RE(c, ER Whla, &) — RO (c, ER (e, &o)

g_Lf£§%%m5m%@?L

If Eq. {3.2) is substituted in Eq. (2.19), all one needs to do to
obtain the first Born approximation is to set a = ¢ every-
where in that expression. In this case the denominator of
a,,, in (2.17) becomes the Wronskian

W [RZh(c €o) R, e, £o)] = 1/ilEG — e

Hence,
1 2 — om %o P en2p (12 '
A(k)(“o,“)=“7’2d2T— X d§§ Rmn(cygj
X8 n (€, €08 6o)S,,., (¢, cOs B) cos m( — o).

(3.7)

It remains now to substitute Eq. (3.7) in Eq (3.4) and carry
out the integrations. This procedure is easier than it might
seem because one can give Eq. (3.4) a simple, compact form.
Namely, by using Egs. (2.13) and (2.14), one can write

R (e, )8 mnlc, cOs 65) cos mip — )
(=7 g ,
= J-exp (ikugx’')S,,.. (¢, cos 8°)

X cos m(i¢ — ¢')d *u, (3.8)

where r’ is the vector to the point of PS coordinates £,
cos 8', ¢ '. Substituting Eq. (3.8) in Eq. (3.7), and using Eq.
(2.14) once more yields

Ao, u) = —stifodffz
T J1

(3.5)

(3.6)

Xf d? u' explik (uy — u)r']. (3.9)

Noting now that 41" is a real, even function of k, upon
substitution of Eq. (3.9) in Eq. {3.4) one obtains

P U g e [aw

de *kexp [ — itk + K)r'](1 + u-uy)

Vir)=

X {explilko + k)r] + exp[ — i(k, + kr]},

where k = ku and k, = ku,,
The required integrations are now elementary. First, no-
tice that the scalar product u-u, does not contribute: the
angular part of the k integration averages it to zero. Sec-

(3.10)
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ond, a translation k—k — k, disposes of the remaining u,
dependence. The k integration can now be carried out and
yields two three-dimensional Dirac functions, one of which
contributes nothing to the remaining integrals. The other
can be written in PS coordinates as

Sr—r)=[d/2PE* -6 —¢&)
X&(p—cos b’ )6(¢ o), (3.11)
and one finally obtains
__r _& _
Vi = ez 06— ) (3.12)

which is the potential we started with in the first place.

IV. FINAL REMARKS

The potential for which the exact scattering problem has
been solved here is only one of many that could be treated
by considering expressions for which Schrédinger’s equa-
tion can be separated. One such potential, for which the
procedure would closely follow the one outlined here
would be a potential vanishing outside an oblate spheroid,
and for which Schrodinger’s equation in oblate spheroidal
coordinates is separable. Of more interest could perhaps be
a potential leading to a scattering amplitude for which the
integral (3.3) can be done, and the integral equation (3.2)
solved, without recourse to an expansion in powers of the
coupling constant.
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