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T ~ expl —2md(Vo—q—k)). (3.22)

For the special case ¢ = k, E = V/2, it is easy to show that

r ol -2 () gl

and that the right-hand side of (3.23) is greater than the
right-hand side of (3.22), thus (3.23) provides an upper
bound on the asymptotic form of the transmission coeffi-
cient. It is worth noting that (3.23) is identical to the result
found by Sauter* with the Dirac theory. Thus we see that in
the weak field limit the transmission to the states with neg-
ative kinetic energy is very small and the reflection is al-
most total.

(3.23)
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A linear potential, when used in the Schrédinger equation, confines a quark. In this paper, we
discuss what happens when this potential is used in the relativistic Klein-Gordon and Dirac

equations.

INTRODUCTION

Quarks were introduced in particle physics in 1964 by
Gell-Mann,' and independently by Zweig,? essentially as
physical realizations of the fundamental three-dimension-
al representation of the group® SU(3). Since all other repre-
sentations of the group, which are identified with the ob-
served hadrons, can be obtained as direct products from
the fundamental representation,* all hadrons could then be
described most naturally as bound states of the constituent
quarks.’ However, free quarks have not been observed ex-
cept for the recent claims by La Rue ef a/.6 of having seen
fractional charges in their superconducting levitation ex-
periment with niobium pellets. Consequently, theorists
have constructed models in which quarks are permanently
confined.” In potential models, based on the Schrodinger
equation, the confinement is provided by a potential that
rises indefinitely as a function of the radial distance. A
most commonly used potential is a /inearly rising
potential.®

The linearly rising potential when used in the Schro-
dinger equation gives real energy eigenvalues correspond-
ing to pure bound states,” thus keeping the quark on which
it acts permanently confined. In this paper we discuss what
happens when this potential is used in a relativistic equa-
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tion such as the Klein—-Gordon (KG) or Dirac. The physics
revealed is illuminating.

LINEAR POTENTIAL IN THE KLEIN-GORDON
EQUATION

Since there is no unique prescription to construct a two-
body relativistic equation, we consider here only a one-
body problem. Let us first use the linear potential
V = arla > 0) as the fourth component of a Lorentz four-
vector'® in the Klein—-Gordon equation,’’ in analogy with
the case of a Coulomb potential usually given in text-
books'? on quantum mechanics:

(= V2 + mir) = (E — ar)¥(r). (1)

Equation (1) can be easily rewritten in the Schriodinger
form

[ — (172m)V? + V.o (r) Jir) = Egr), (2)
where

E=(E*—m%/2m (3)
and v

Verlr) = (1/2m)2Ear — a*F). (4)

A plot of V4 (r) vs is given in Fig. 1. Note that V_;(r) does
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Fig. 1. Plot of V(r) in Eq. (4) versus 7.

not keep on rising indefinitely; it turns over because of the
second term ( — a®7%), which dominates at large . Conse-
quently, it does not confine a quark permanently; the quark
leaks out. The effective potential V_,(7) is zero at » = 0 and
r=2E /a, has a maximum value equal to E?/2m at
r=FE/a,and goes to — oo as 7—» . The transmission co-
efficient T for the quark can be easily calculated using the
WKB method.'? For this purpose, we obtain from Eq. (2)
the one-dimensional radial equation

_d*Uum +2m(_1_1(l+1)

+ Vglr) — E‘)U(r) =0

dar 2m P
(5)
after setting
Yr)=R(NYT(6,6)
and
U(r)=rR(n).
Then T is given by
4
= —— 6
(26 +1/26)* (6)
with
0= epr * (r)dr). )
Here
— 172
k() = [Zm (Lﬂ’r—” + V,,,(r)—E)] ®)
2m P
and r, and 7, are the roots of the equation
k(r)=0.

The integral in Eq. (7) can be done analytically for / =0
with the result’

T2 2
f kindr= 27 9)

r 2a
From Eq. (9) it is clear that the transmission coefficient is
independent of the total energy E; it depends only on the

mass m of the quark and the strength parameter a of the
linear potential.'® This is a very interesting result. It says
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that the quark has the same probability of leaking through
the barrier potential V_q{r) irrespective of whether it is very
energetic or just crawling.'® Thus a quark is no longer con-
fined by a linearly rising potential when it is used as a vector
in the KG equation. This is equivalent to saying that the
energy eigenvalues are no longer real but are complex and
so do not correspond to pure bound states.'’

Confinement, however, is restored if the linear potential
is used as a Lorentz scalar. A scalar potential transforms
like the mass under Lorentz transformation. It is then add-
ed to the mass term in the KG equation:

[— V2 + (m + arfJY(r) = E ). (10)
Equation (10} can be rewritten in the Schrodinger form
( Ll + 1 (2mar + azrz))zp(r) =Eyr) (11)
2m 2m

with E given by Eq. (3). Note that in Eq. (11) the effective
potential

Voelr) = (1/2m)2mar + a*F) (12)

and that in it the term a7 appears with the plus sign. As a
result ¥, (#) in this case will keep on rising indefinitely, and
keep a quark permanently confined. The energy eigenval-
ues will again be real. For / = 0, these can be easily deter-
mined by noting that by a change of variable p = m + ar,
Eq. (11) can be rewritten as

14

S +IKpU=E'U (11
with

K =1/ma?
and

E'=(1/a)E + m/2).
Equation (11') represents a one-dimensional harmonic os-
cillator and thus gives

E'={n+VIK/m),
or the energy eigenvalues

E,=v[2n+ lja). (13)

t16

Note that these are independent © of m.

LINEAR POTENTIAL IN THE DIRAC EQUATION

Quark is considered to be a spin-} particle. Therefore the
relevant equation to be used is that of Dirac, which we now
discuss. The Dirac equation with both a vector potential ¥
and a scalar potential S is given by

[ap+Bim+S)+ VY =Ey. (14)

With the usual method given in Schiff,'? Eq. (14) can be
reduced to two coupled equations in g and f, the large and
small components of the Dirac wave function ¢:

m+s—E+vig— L 1=%ro, (15a)
dr r
dg xk+1
m+S+E~-V)f— — — g=0. (15Y)
dr r
In Egs. (15), x = — (/ + 1) when the total angular momen-

tumj = [ + }, and x = [ whenj = [ — §(I #0). It is straight-
forward though somewhat tedious to show that the
transformation'®

v, =rg/Vim+S+E-V) (16a)
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hh=rf/Vim+S—E+V) (16b)

transforms Egs. (15) into the one-dimensional Schrodinger
form

(- oL+ vl =Ew, (172)
2m dr? ©
(———l—d—2+V2 )1// =Ey (17b)
2m dr A 2
where E is given by Eq. (3),
1 { ki + 1)
Vo= __(__
T m P
4+2EV—V24+2mS+S?
4 1 V" —S"+2S' = V')k/r)
2 m+S+E—-V
' n2
pI_EVP ) 19
4 m+S+E-V)
and
Vi EV)=Vi(—x —E —V) (19)

In Eq. (18) primes mean differentiations with respect to r.

Note that #, is related to the large component g of the

Dirac wave function, and ¢, to the small component f.
Now if § =0 and V' = ar, from Eq. (18),

V:ﬁ(r) = _.1_( .K(K_-H_)

2m r
+ 2Ear — a*r — _axlr
m+E—ar
3 a’ )
S 20
4 m+E—ar (20
Thus for k = — 1, the plot of ¥ '¢(r) vs r will be similar to

that shown in Fig. 1. The quark will leak out and the energy
eigenvalues will not be pure bound states. On the other
hand, if ¥ = 0, and S = a7, i.e., pure scalar potential, from

Eq. (18),

2m e
+ 2mar + a®*r + __ax/r
m+E+ar
2
3 __‘L_z ), (21)
4 Im+E+ar)
which, for x = — 1, is similar to Eq. (12), and thus leads to

permanent confinement of the quark with real energy ei-
genvalues. In short, a vector potential leads to leakage of
the quark in both the Klein-Gordon and the Dirac equa-
tions whereas a scalar potential permanently confines it.

CLOSING REMARKS

The entire discussion above could have been made in
terms of a general confining potential a7 (a > 0, 8> 0), but
then the physics would not have been as transparent as it is
with the linear potential. The linear potential when used in
the Schrédinger equation describes pure bound systems
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and thus has been used in the study of the spectroscopy of
the charmonium, with the belief that quarks are confined.
The linear potential when used in a relativistic equation, on
the other hand, is capable of describing physically both
pure bound states as well as quasistationary states (reson-
ances); the former when it is used as a Lorentz scalar, and
the latter when it is used as a vector. With the philosophy of
quark confinement, the lighter systems such as the 7 me-
son, p meson, etc., are therefore to be described relativisti-
cally with pure scalar potentials. If quarks do exist® as
physical particles, however, then one would have to aban-
don the philosophy of complete quark confinement and
allow a pure vector or a mixture of vector and scalar poten-
tials in relativistic models.

It is clear that the relativistic behavior of a nonrelativis-
tic confining potential depends very much on its Lorentz
character. This is not shown in existing textbooks on quan-
tum mechanics. The above material, therefore, should play
its supplementary role for students as well as instructors.
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