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Quantum solutions for a symmetric double square well

Edward A. Johnson and H. Thomas Williams

Department of Physics, Washington and Lee University, Lexington, Virginia 24450
(Received 23 February 1981; accepted for publication 20 May 1981)

The quantum behavior of a wave packet in a one-dimensional infinite square well with a finite
barrier in the center is considered. Computer generated plots are presented that lead to useful
analytic approximations for finding eigenvalues of the Schrédinger equation and for explaining

the time dependence of wave packets.

L INTRODUCTION

The project that generated this work began as an attempt
to produce a one-dimensional, nonrelativistic model for
off-mass-shell scattering. Using graphics techniques like
those of Goldberg, Schey, and Schwartz,' a systematic
study of the scattering of bound-state wave functions, as
exemplified in Segre and Sullivan,” was proposed. At pre-
sent, we are short of our goal, yet the use of computer
graphics has already produced insights into the behavior of
certain bound-state wave packets, which have led to useful
“semi-analytical” results. We describe two such results, re-
lating to the determination of energy levels of an infinite
well with a finite central barrier, and the “regeneration pe-
riod” of a wave packet in a potential well.

This work began as an assignment in an undergraduate,
one-semester quantum mechanics course, and grew into a
senior thesis topic. The physical ideas involved are within
the grasp of undergraduate physics majors, and needed
computer experience, equipment, and mathematical tech-
niques are also not unusual within undergraduate pro-
grams. The problem is presented as an example of a large
class of straightforward quantum mechanics projects with-
in the capabilities of good undergraduate physics majors,
and with clear analogies to interesting physical systems.

II. PROBLEM

We propose to study the time evolution of a wave packet
bound in a well containing a barrier. The simplest such
quantum-mechanical system is that of a wave packet
bound in a symmetric double well—a rectangular potential
barrier centered in an infinite square well (Fig. 1). The wave
packet is constructed of a linear combination of solutions
(eigenfunctions) of the time-dependent Schrodinger equa-
tion corresponding to specific energy levels (eigenvalues).
Individual wave functions are found by solving the time-
dependent Schrodinger equation:

- F
am ax?
Solving this for the spectrum of eigenvalues and corre-
sponding eigenfunctions, linear combinations with desired

properties can be formed, and their development in time
can be studied.

—Vxt)+ V¥(x,t)= —tﬁ—-—W(x,t) (1)

HI. SOLUTION

Eigenvalues and eigenfunctions for piecewise continu-
ous potentials such as those of Fig. 1 are straightforwardly
found, using techniques familiar from most introductory
texts (see, for example, Ref. 3—the “hands on” approach of
this book is much in the spirit of the present work). Formal-
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ly, the eigenfunctions of this potential are (using the nota-
tion of Fig. 1):

W(x) = A sin ((2’"‘: )mx) exp ( _ﬁiE :); @)

in region II, for energies below the barrier height,

Vixt) = [B exp ( [ZM(V2;E)]1/2 x)
— [2m(¥,

) (55 ):

(3)

+Cexp(

in region II, for energies above the barrier height,

Wx,t)= [B sin ( [2’"“’2; E)'” x)

+ Ccos ( [2m(V2ﬁ—E)]”2 x)] exp( —

Et);

)
¥(x,t)=Dsin (—(w{x L )) exp( E ) {5)

The coefficients 4, B, C, and D, as well as the energy eigen-
values E, are determined (to within the overall normaliza-
tion of the wave function) by enforcing continuity of ¥ (x,t)
and its spatial derivative at the discontinuities in the poten-
tialatx = L, and x = L,. These conditions yield equations
for three of the four coefficients:

and in region III,

B/4 =}exp(—k,L,)
X [sin (k,L,) + (k,/k;) cos(k,L,)] , (6)
C/4 =) explksL)
X [sin(k,L,) — (k./k;) cos(k,L,)] , (7)
'R X AV
Ve,
Veo V=0
x=0 X =1 x=1, xe,
REGION 1 pesiod REGION 111

Fig. 1. Symmetric double well along with the notation used in the paper.
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Fig. 2. Energy level function for a
near-zero barrier is similar to that
of an infinite square well.

and
D/A4 = —coshlk,(L, — L,)]
— (ky/ky) cotlk (L) sinh[ky(L, — L)], (8)

where k, = 2ME)"/*/# and k, = [2M (V, — E)]V/*/#. A
transcendental equation whose solutions are the energy ei-
genvalues E, is also found:

tanh[k,(L, — L )I[(k,/k,)* sin’(k,L,) + cos’(k,L,)]
+ 2ky/k,) sin(k, L) cosk,L) = 0. 9)

To be sure, this equation is only indifferently tractable
and in difficult cases, a numerical solution requires pa-
tience and a great deal of computer time. Instead of this
equation, our final calculations use a semianalytical inter-
polation scheme (discussed later in this section) that ex-
ploits the double well’s inherent symmetry. However, we
present this formal solution as well since a study of Eq. (9)
through computer plots and numerical solutions reveals
several interesting facts.

In Figs. 2-5, the total energy E is plotted along the hori-
zontal axis from E = 0 to E = V,. The left-hand side of Eq.
{9) is plotted on the vertical axis in arbitrary units. The
zeroes of the function, points where it touches the energy
axis, are solutions to Eq. (9) and represent the energy eigen-
values for the system.

Figure 2 shows the transcendental function for a barrier
of near zero width.* If we number the eigenvalues in order
of increasing energy (beginning with n = 1 for the ground
state), we observe an approximate n> dependence of the
energy levels typical of the eigenvalues for the infinite
square well without a barrier.

In Fig. 3, the barrier occupies 0.3% of the well’s width.
Here the tanh term in Eq. (9) becomes appreciable and lifts
the entire function so that the roots occur in definite odd-
even pairs. A comparison with Fig. 2 shows that although
roots corresponding to even n have not changed substan-
tially, those for odd n have moved upwards in energy.

This can be understood by considering the wave func-
tions corresponding to neighboring odd and even eigenval-

Fig. 3. Energy level function for a
0.3% barrier where the tanh rasies
the entire function and slides the
roots together.
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Fig. 4. Function for a 0.5% barrier.

ues: the n = 1, n = 2 pair will be described here as an illus-
tration. For zero barrier width the wave functions are
n =1 — a half-period sine wave with an antinode in the
center of the well; and n = 2 — a full-period sine wave with
a node in the center. The changes in these functions, as a
barrier of fixed height begins to grow in the center of the
well, are readily seen. The curvature of the functions in the
region occupied by the barrier will decrease, becoming neg-
ative for wave functions representing energies below the
barrier height V,. As the barrier widens, a dimple will be
produced in the center of the symmetric (n = 1) wave func-
tion that will be forced towards zero amplitude there (see
Fig. 6). In contrast, since the antisymmetric wave function
(n = 2) is already small near the center of the well, curva-
ture changes there produce only minor changes in the
shape (Fig. 7). Thus the probability density function ¥ *¥
for the symmetric wave function is almost identical to ¥ *¥
for the antisymmetric wave function. The probability den-
sity functions are not quite identical since the symmetric
wave function does not vanish at the center of the barrier.
Reflecting these changes in the eigenfunctions, the n =1
eigenvalue changes noticeably, increasing as the barrier
width increases: the n = 2 eigenvalue moves upward more
slowly, so that the difference between the two energies de-
creases. The drift of the n = 2 eigenvalue towards higher
energies is characteristic of the limit of a barrier nearly
filling the well, where the low-lying eigenvalues will ap-
proach those of an infinite well of width L, (€L;).

The 0.5% barrier system in Fig. 4 shows more pro-
nounced behavior of the sort already cited. Here, we note
an interesting empirical fact: as the barrier widens, the en-
ergy difference between each odd root and its even partner
approaches an unexpected regularity. The energy differ-
ence between the odd root # and the even root n + 1 is very
nearly (four significant figures with a 0.5% barrier) equal to
(n/2 + 1/2)* times the energy difference between the first
odd root (n = 1) and the first even root (n = 2). In other
terms,

E,,, —E,=[n+1)/2P(E, - E,). (10)

Fig. 5. Function for a 20% barrier
has only 18 roots below the barrier
height.

f\f\/\/W\
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Fig. 6. Qualitative sketch of the
symmetric wave function corre-
sponding to the first energy
eigenvalue.

This surprising fact greatly simplifies the search for eigen-
values, and finds an important application in Sec. IV’sal-
culation of packet regeneration periods for a particle bound
in a symmetric double well. Figure 5 represents a system in
which the barrier occupies 20% of the well’s width and
demonstrates an aforementioned consequence of wider
barriers. As the barrier widens, the transcendental stretch-
es out along the energy axis. This causes the higher roots to
slip above the height of the barrier. In this figure, the tran-
scendental has only 18 roots below the barrier height, while
the original function in Fig. 2 has 22 roots.’

As noted earlier, a quantitative search for the energy
levels may be simplified by making use of the symmetry of
the system. First, to ease later computations for the eigen-
functions, we redefine the constants of Eqs. (2)5) so that
the size of the numbers involved stays within reason. Ex-
plicitly, we let B’'= B exp(k,L,/2) and
C' = Cexp( — k,L,/2). Thecontinuity equationsatx = L,
then become

sin(k,L,) = B'/A exp[k,(L, — L3/2)]

+ C'/A exp[ — ky(L, — L;/2)] (11)
and

cos(k,L,) = (ky/k,){B'/A exp[ky(L, — L;/2)]

— C'/A expl — ko\L, — L3/2)1}. (12)

Since wave functions corresponding to odd-(even-} num-
bered energy levels are symmetric (antisymmetric) about
thecenterofthewell,itisclearthatB’' = C'(B’' = — C')for
these wave functions. We discuss only the odd solutions
here because the treatment for even solutions is quite simi-
lar. For odd solutions, the boundary conditions may be
written as

sin(k,L,) = 2B'/A coshk,(L, — L./2) (13)
and

cos(k,L,) = 2B '/A(k,/k,) sinh{k,(L, — L,/2)]. (14)
Dividing the second equation by the first yields an equation
whaose roots are the odd-numbered energy eigenvalues:

cot(k,L,) = (k,/k,) tanh[ky(L, — L,/2)]. (15)

Fig. 7. Qualitative sketch of the
antisymmetric wave function cor-
responding to the first even energy
level.
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T 44-LL Fig. 8. Diagram of the simpli-
“H  fied energy level function for
odd roots.

The broken line in Fig. 8 is a graph of the right-hand side
of this equation while the solid curves represent the left-
hand side. The quantity plotted along the horizontal axis is
(k,L,), which is proportional to v/E. The vertical lines are
values of (k,L,) equal to integral multiples of 7, where the
left-hand side of Eq. (15) is undefined.

Since the argument of the hyperbolic tangent function in
Eq. (15) is always negative, the right-hand side must always
be negative. Because of this, the two functions may inter-
sect only where cot{k,L,) is negative. In other words, the
gth odd root (i.e., root number n = 2g — 1) must occurina
region defined by (¢ — 1/2) m <k,L, <qm. This fact leads
to two useful results. First, since k, = (2mE)'/?/#, we can
calculate upper and lower bounds for the gth odd energy
level:

#rilg — 5)2 g’
2mL 2 291 < 2mL? (16)

Finally, since the same upper and lower bounds constrain
the gth even energy level (root number n = 2g), we can
calculate the total number of allowable energy eigenvalues
below the barrier height by letting E = ¥, and solving the
left inequality for ¢. The total number of roots below the
barrier height is then found to be
2 INT [2mV,)'> L,/#im +1]. (Here “INT” represents
“integer part of.”)

Having determined the number of roots with E < ¥V, up-
per and lower bounds for each root, and the spacing rela-
tionship for adjacent pairs of roots [Eq. (10}], a simple bi-
section procedure will locate them. Eigenvalues of the
system with E > ¥V, closely approximate the eigenvalues of
the infinite well with width L, and this allows good initial
guesses in an iterative procedure involving Eq. (15).

This numerical determination of the eigenvalues enables
straightforward evaluation of the coefficients B, C, (or B',
C')and D. The constant 4 is set to satisfy the normalization
condition. Equations (2)—(5) can thus be numerically evalu-
ated to give the eigenfunctions. The wave packets, whose
time dependence is the next subject of interest, are formed
from linear combinations of these eigenfunctions.

Fig. 9. Original wave packet at
t = 0 with a diagram of the well.
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Fig. 10. Wave packet has melted
and the right part sloshed against
the barrier.

IV. WAVE PACKET CONSTRUCTION AND TIME
EVOLUTION

The solutions to Schrédinger’s equation as described
above form a complete, orthogonal set of functions of x,
0 <x < L, atany time t. Because of this, arbitrary functions
of x in this range may be written as a linear combination of
these solutions. We chose to study a packet whose initial
shape approximates a Gaussian:

fix)=exp{ — [(x —x)/0)}= 34, ¥, (x,0;  (17)

where each 4,, is a time-independent coefficient. No set of
A,, will make this relationship exact, since f(x) does not
vanish at the region boundaries x = 0, x = L. If, however,
o4L, and x>0, (L; — xo)>0, a very close approximation
to f(x) can be made by choosing the 4,, to be the Fourier
coefficients

x =L,
4, =f ¥* (x,0) f(x)dx. (18)
x=0

It is easily demonstrated that, due to symmetry, the mo-
mentum expectation value for this packet is zero. Using
such a packet, we can study its spreading without the addi-
tional complications of overall motion and scattering.” We
present results for the wave packet whose initial probability
distribution is shown in Fig. 9. The well barrier in this case
is 2%, and the Gaussian width is o = 0.2L,. To follow the
evolution of this packet in time, we simply evaluate the sum
3.4, ¥, (xt)and plot the absolute value squared of the
result, for various values of 7.

In Fig. 10, the original wave packet, which was localized
in the left side of the well, has dissolved into a right moving
and a left moving part, and the right lobe has sloshed
against the barrier. Through quantum tunneling, some of
the strength has seeped into the right side of the well. In
Fig. 11, the wave packet has sloshed back and forth several
times and more strength has found its way into the right
half of the well.

Fig. 11, Wave packet, pictured sev-
eral collisions later.
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Fig. 12. Wave packet at one-half
the predicted packet period.

Figure 12, depicting a yet later stage of evolution, shows
a situation in which more than half the probability density
is present in the right-hand half of the well. At a time
roughly twice that of Fig. 12, the wave packet has essential-
ly reformed into its # = O shape (Fig. 13). The time elapsed
between the situations depicted by Figs. 9 and 13 is referred
to as the packet regeneration period.

The regeneration phenomenon has been demonstrated
in other, similar, situations. Deutchman® has described it
for a finite depth symmetric double well, using a simple
wave packet made up of equal parts of the first and second
eigenfunction. Segre and Sullivan,” in their study of an infi-
nite square well with a delta function barrier, point out that
wave packets in an infinite square well must regenerate
since all excited-state energies are integer multiples of the
ground-state energy. Since every eigenfunction in this case
is periodic with a frequency E, /h, all wave packets made
up of such waves must reform with a period of 4 /E. The
evolution of such a packet in a well without a barrier is
illustrated in Figs. 14, 15, and 16.

Since the energy eigenvalues in a symmetric double well
are not multiples of the first energy eigenvalue, the proce-
dure outlined above does not produce the packet regenera-
tion period for a wave packet bound in such a well. To solve
this problem, we make an analogy to the well-studied phe-
nomenon of beats formed by two waves of nearly equal
frequency. The wave packet thus formed is characterized
by a beat frequency equal to the frequency difference of the
two component waves. In a similar fashion, we define a
beat frequency, v,,, for the first pair of wave functions in the
double well: v, = (E, — E,}/h.

Because the energy difference between each pair of ei-
genvalues is small compared to the eigenvalues and is a
multiple of the energy difference between the first pair of
eigenvalues, we reason that the beat frequency already cal-
culated is equal to the packet frequency in the symmetric
double well. This gives '

r=1/v, =h/(E,—E,). (19)

Fig. 13. Wave packet at a full
period.
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Fig. 14. Wave packetin anin-
finite square well pictured at
one full period, essentially
identical to its shape at = 0.

Figures 12 and 13, graphs of ¥*¥, att=7/2and t =,
respectively, confirm this prediction. Even though a small
amount of probability remains on the right-hand side in
Fig. 13 due to truncation and round-off errors in the com-
putation the wave packet only approaches its original form
when 7 is an integral multiple of 7. It is interesting to note
that the regeneration period is a function of the well param-
eters, but not of those of the wave packet.

V. CONCLUSION

In the development of the above work, computer graph-
ics played a crucial role. In the search for eigenvalues of the
Schrodinger equation, computer generated plots such as
those of Figs. 2-5 were suggestive of regularities for the
eigenvalues that were not previously suspected. A search
for a quantitative description of these regularities led to the
result expressed in Eq. (10}, and the streamlined procedure
for finding energies described in Sec. III above. Observing
the time behavior of wave packets within the well using
computer generated graphs (as in Figs. 9-13) leads to an
investigation of the phenomenon of regeneration, leading
to an accurate, albeit approximate, analytic formula for the
regeneration period [Eq. (19)].

The particular potential investigated in this paper is not
without analogy in the physical world. The potential felt by
the nitrogen atom in the NH, molecule can be approximat-
ed by such a symmetric double well. The existence of close
lying energy level pairs, and the presence of a low, regen-
eration frequency (producing what is known as the inver-
sion spectrum) is experimentally established.” Experimen-
tal data for heavy ion collisions at energies where “quasi-

Fig. 15. Infinite square well
wave packet at one half-
period.
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Fig. 16. Infinite square well wave packet at one-quarter period. Although
each lobe is smaller than the original, they appear the same size because of
scaling.

molecules” are expected to be formed by the two colliding
nuclei, also show tendencies towards energy level pairs.®
The double well should also provide a reasonable qualita-
tive description in this case.
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