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The infinite square-well potential in one dimension is solved using Feynman path
integration. This solution uses an image point method equivalent to a sum over

classical paths.

INTRODUCTION

The infinite square-well potential is one of the simplest
bound-state problems in wave mechanics; it is usually one
of the first examples given in any introductory quantum
mechanics course. The problem is to solve for the motion
in one dimension of a particle under the influence of the
potential
0 for0<x<L
o forx<OQorx ==L,

wnﬂ (1)

The normalized solutions to the time-independent Schré-
dinger equation for this potential are

Yn(x) = {V 2/Lsin(wn/Lx) for0<x <L

0 forx <Qorx=1L,

with the energy eigenvalues
E, = (1/2m)(wnh/L)2 3)
For 1, > t; and 0 < x,,x, < L the propagator is given by

(2)

(xb,to|Xasta)
= ¥ expli/MEn(ts ~ t) Wi Walxa)i (4)

otherwise it is zero.

This is a very familiar result from wave mechanics. It has
the standard interpretation in terms of the normal modes
of oscillation of a wave in a resonant cavity. This interpre-
tation, however, deals only with the wave part of the
wave-particle duality of matter. A standard tool for ex-
hibiting the particle aspects of this duality is the Feynman
integral over paths. Applying directly the formalism for this
integral! yields the relation

Xb i hm
= — — w2
(xp5tp| Xasta) J; cxp(h j: 5% (t)) Dx(1)
L L
= lim J; j; {(xp — xu)0(x0 — x4)

z m _ 3 m \n/2 . n
X CXP(,E] e (xk — Xg-1) ) 27rhe) II dxi. (5)

The limits for each integration are 0 and L, since for the ‘

infinite square well, the particle is confined even quantum
mechanically to this region. There is no apparent way to
demonstrate this from within the path integral formulation,
and it can be argued that this is because the problem is
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stated improperly (see below). This fact can be seen, how-
ever, by following the development of the path integral from
the Heisenberg formalism?

(xb,tb Ixa,ta>

= lim f‘” f_” 8(xp = x,)0(x0 — x4
X I"I (Xkoti | Xh—1stk—1) InI dxg.  (6)
k=1 k=0

For the square well, each factor in the integrand vanishes
for xx < 0orx; = L. Ineffect, then, each integral is limited
to the domain 0 < x; < L.

The difficulties in evaluating the integral (5) are now
obvious; a Gaussian integral cannot be evaluated in closed
form if it is restricted to a bounded domain. The prospects
for repeating this integration, and then proceeding to the
limit, seem bleak indeed. This direct approach to the path
integral does not readily yield a solution. It will be seen that
a less direct but more intuitive attack will give a solution
that can be justified rigorously using path integrals.

POTENTIAL BARRIER

Before proceeding with this method, we will first solve
the simpler problem of the infinite potential barrier, whose
potential function is

0 forx>0

V) = [oo forx < 0. )

From this problem, we will develop the tools, both intuitive
and mathematical, for dealing with infinite potential
discontinuities, which we will then apply to the square-well
problem. -

The momentum eigenstates for this potential are not
those of a free particle, but rather

_ |(1/+/7h) sin[(p/h)x]
¥p(x) 0 forx=<0. ®)

This can be thought of as coming from the reflection coef-
ficient of —1 and the transmission coefficient of 0, or
equivalently from the application of the boundary condi-
tions at x = 0. The propagator is now

forx>0
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Fig. 1. Two classical paths connecting (x,.!,) and (xp,¢) and their cor-
responding image points.

m 1/2
2wik(ty — ta))
im
X [exp(————zmtb =0 (xp — x,,)z)

m_ . _ .\
2hitr = 1) x"))
= (xb’tblxaata)F - (_Xb,tblxa,ta>p, (9)

where the subscript F denotes the propagator for a free
particle. ,

This result has two explanations using path integral
concepts. The first of these is not mathematically rigorous,
relying more on physical intuition. Since the particle is es-
sentially free for x > 0, it would seem that its behavior
would be closely linked to that of a free particle. It is well
known that for a free particle, or for any other particle
whose Lagrangian is quadratic in position and velocity, the
propagator has the form Ne#/#Sci where N is a normalizing
factor and S¢) is the classical action, the integral of the
Lagrangian along the classical path. For the potential
barrier the key difference is that there are two classical
paths (see Fig. 1). The first is that of a free particle, while
the second is that of a particle that bounces off the wall on
its way from (x,,,) to (xp,?5). Geometrically, this second
path can be constructed by first reflecting (x;,t,) about the
line x = 0, then constructing the free-particle path x(t)
from (x,,t,) to this image point (—x5,2,), and finally re-
flecting the path back to (x,t5) so that x(¢) = 0 every-
where.

Alternatively, we may perform these reflections with
(x4,t,) rather than (x;,25), and obtain exactly the same
results. This corresponds to the fact that the second term
of Eq. (4) may also be written (xp,tp| — Xg4,¢4)F. For
simplicity, we will consider from now on only reflections of
the final point.

Applying the superposition principle, we would expect
the propagator to be the sum of contributions from these
two classical paths, which should be the free-particle
propagators from (x,,t,) to (xp,t5) and (—xp,4), respec-
tively, except perhaps for some effect of the barrier on the
reflected path. Equation (9) confirms these expectations,
and indicates that the effect of the barrier on the reflected
path to multiply its propagator by the phase factor —1. This
phase factor can be thought of as arising from the bound
end reflection of the wave function at the barrier.

<xb’tb|xa,ta> = (

- exp(
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The above arguments provide a rather nice intuitive in-
terpretation of the solution (4), but are open to serious
objections from the point of view of the path integral for-
malism on which they rely. The fundamental objection is
that in principle every allowed path between (x,,t,) and
(x»,25) must be counted in determining the propagator
(Xp,tp|Xasta ). There is no a priori reason for preferring the
classical paths. Furthermore, the reflected path is not even
allowed physically, since it intersects at one point the for-
bidden region x < 0.

There is a second, more rigorous path integral interpre-
tation of Eq. (9) that takes care of these objections. Con-
sider the first term on the left in this equation as an integral
over paths. Clearly, there are many paths in this integral
that enter the forbidden region x < 0. It will be shown that
the effect of the second term is to cancel exactly the con-
tribution from these forbidden paths. More explicitly, it will
be shown that

b L fhem_,
J;a " exp(h j:a 5 X (t))ﬂx(t)

=J:beXp(Lf.zJ::b%xz(t)dt)i)x(t)’ (10)

where the (F) on the first integral indicates that only the
forbidden paths are to be counted. Equation (10) is equiv-
alent to Eq. (4).

To derive Eq. (10), we need only demonstrate a one-
to-one correspondence between forbidden paths from
(xa»ta) to (xp,tp) and paths of equal free-particle action
from (x,4,2,) to (—xp,t). Consider an arbitrary forbidden
path x (1) from (x,,2,) to (xp,t5), and let ¢ ax be the max-
imum time for which x(¢) < 0. Clearly, a5 exists since
x(t) is continuous. Define a new path %(¢) (see Fig. 2)

(1) = x(t) fort < tpax an
—=x(t) fort > tmax.
This establishes a correspondence between the two classes
of paths. Conversely, we could have started with X(¢) from
(x4,t2) to (—xp,tp) and defined x(¢). This means that the
correspondence is one-to-one and onto. In addition, the
free-particle actions along these two paths are equal, so the
correspondence has the desired features. Thus from path
integral considerations alone, we have derived the solution
to the infinite potential barrier problem.

~
i
P
o
o
-
~

X — - m m—— - — —

b

Fig. 2. Typical pair of cancelling paths x(¢), a forbidden path, and %(t),
its corresponding image path.
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INFINITE SQUARE WELL

We now understand, more or less, the effect of an infi-
nite potential discontinuity on the motion of a particle, and
can apply this understanding to a problem with two such
discontinuities, the infinite square well. The intuitive in-
terpretation involving classical paths will serve as a guide
for constructing an Ansatz solution to the square-well
problem. This Ansatz is equivalent to the solution given by
the Schrodinger equation, and can be justified by path
cancellation techniques based on those used above for the
potential barrier.

The key to the intuitive mterpretatlon of the infinite
potential barrier problem was the observation that there are
two classical paths connecting the points (x,,7,) and (xp,tp).
This is because the classical particle may go directly be-
tween the two points, or it may bounce off the wall once on
the way. With the infinite square well, the particle may
bounce back and forth an arbitrary number of times on its
way from (x4,2,) t0 (xs,t5). This leads to an infinite number
of classical paths connecting the two points. These paths
correspond to an infinite sequence of images of the final
point (see Fig. 3) having coordinates

_ JrL+x, forreven 1)
(r+ 1)L —x, forrodd,

where the subscript r is used to denote the number of re-
flections in the classical path corresponding to the image
point, and to distinguish from the subscript » used for the
energy eigenstates.

A generalization of the above arguments for the potential
barrier would suggest that the propagator (xp.tp|x4.0,)
should be the sum of contributions from each of these
classical paths. The contribution from each classical path
should be the free-particle propagator for its corresponding
image point, multiplied by —1 for each time it is reflected.
This leads to the Ansatz

Xr

(12)

Although different in form, this is exactly the solution given
by the Schrt')dinger equation To see this, we rewrite it

(Xb,tb|Xasta) = ’__m 2—7'% f

X [exp[% (_Z-;n— (ty — 1) = p(2rL + xp — xa))

(xp:t|Xasta) = 2 (=1Y (X 05| Xaula ) F.

r=—c

—exol =22 (1 =y — e —
exp[ A (2m (ty — ta) p(2rL — x, xa))

" 2mh

} (13)

exp __ (tb ta)) exp(-;; pxa)

h 2m
—2irLp

* s‘“(h ik

The sum is given by the Poisson summation rule

> 2irLp w wnh
£ o[- £ -

r=—c

a9

Substituting this into Eq. (13) simply picks out the values
p = wnh/L and converts the integral to a sum

1 i
(xp, tb'-xa,ta) = _Z z CXP( En(tb - ta))
n=-—w

X explik,xg) sin(k,xp), (15)
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where E, = (1/2m) (wnhk/L)? and k, = wn/L. Noting that
the term with » = 0 vanishes, we can combine the positive
and negative terms to get

%i En(tb - ta))

X sin(k,x,) sin(k,xp).

2 ©
(xptblXaita) == 3 exp(
Ln=l

(16)

This is the same as Eq. (4), which was derived from the
Schrodinger equation.

PATH CANCELLATION

We have shown that the Ansatz solution to the square-
well problem (12) agrees with the solution to Schrodinger
equation (4). Of course, this is no mere coincidence, and the
Ansatz can be justified by path cancellation arguments
similar to these used for the potential barrier. Because there
is an infinite number of image points, the arguments in this
case will necessarily be more complicated, but their
underlying content is the same. The effect of the image
points is simply to cancel the contribution to the free-par-
ticle propagator {xs.,t| x4t ) r from paths that enter the
forbidden regions x < 0and x = L. We write this symbol-
ically

xa(F)

r_—co

( f ——xz(t)dt)Dx(t)—, a17)

where the (F) indicates that the integration is to be per-
formed only over forbidden paths, and is included in each
term to simplify notation. Note that this is equivalent to the
Ansatz solution (12).

The path cancellation arguments are conceptually quite
simple, though rather tedious when written out in detail. For
this reason I present them first in outline. The method is to
create a partition of all the paths considered in Eq. (17),
such that the contribution at each equivalence class is zero.
This will make the integral vanish, as desired. In order that
the contribution of each equivalence class be zero, we im-
pose two requirements. First, all paths in any one equiva-
lence class must have the same free-particle action. Second,
an equal number of these paths must go to even-numbered
image points as to odd-numbered ones, so that an equal
number will be counted positively as negatively.

Now we construct the equivalence class [x(z)] of a path
x(t) from (xg4,t,) to one of the image points (x,,t,). It is
necessary to make a number of definitions, whose meaning

i
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Fig. 3. Several of the classical paths connecting (x,,2;) and (xp,#5) and
their corresponding image points.
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is summed up in Fig. 4. First, let np be the number of the
first line x = noL intersected by x(¢). Let ¢, be the largest
time when x(t) = ngL, before x(¢) terminates or intersects
any other of these lines. Now we produced by induction,
assuming that ng, ..., n;—y and ty,. .., t; have already been
defined. Let n; be the number of the next line x = »;L in-
tersected by x (), if x(¢) intersects any more lines before
terminating. Let #;4+, be the largest time when x = n;L,
before x(¢) terminates or intersects another line. When we
have come to the last intersection of x(¢) with any of the
lines x = nL, labeled n;—, for definiteness, define ny, = ny—
+ 1if x(¢p) > ne—Land ng = nj—y — 1if x(2) < np—L.
We are tacitly assuming k is finite, an assumption that will
be discussed later.

Now we use these sequences ¢1,...,# and ng, ..., 5 to
define the 2% elements of the equivalence class [x(¢)]. First,
we label x,(2) = x(2). Now we define x,(t), by reflecting
x1(t) about the line x = n,— L for t > ¢,

x2(t)=‘2”k—lL—X1(I) for t > 1y a8

xi(t) fort < 5k.

Here again we proceed by induction, this time assuming
that the paths x(#), ..., x2i(¢) have already been defined.
Define the paths x4 ((2), ..., x2i+1(¢) by reflecting these
paths about the line x = ny—;— L for t > t;_;

2ng—j L — x;(t) fort > ty—;
xzf+j(t)=[ emimtL = 1) .

xi(t) fort <ty (19

Repeating this process, we end up with 2% paths x,(z), ...,
x2k(2).

We now make several observations that will make it clear
that these 2% paths form an equivalence class with the de-
sired properties. First of all, they do form an equivalence
class; the property that two paths can be transformed into
one another by this reflection process is an equivalence
relation. Reflexivity, symmetry, and transitivity are all
trivial consequences of the definitions.

Second, all these paths have the same free-particle action.
This is because the free-particle Lagrangian depends only
the square of the velocity, which is left unchanged except
at a finite number of points, a set of measure zero.

Third, these 2% paths are distinct. This can be seen by
comparing their corresponding sequences #g, ..., Mg,
keeping track of how they transform under Egs. (18) and
(19). For our purposes, however, it suffices to observe that
each of the last 2%~ paths x,-14,(¢) is distinct from the
path x;(¢) from which it is derived, but this is obvious, since
their endpoints do not coincide.

Fourth, and last, an equal number of these paths termi-
nate at even-numbered as at odd-numbered image points.
If x;(¢) terminates at an even-numbered image point, then
Xok-14;() terminates at an odd-numbered one, and vice
versa. This is guaranteed by the minus sign in the top of Eq.
(19). This, coupled with the above facts, is enough to
demonstrate that the contribution of the equivalence class
[x(#)] to theintegral (17) is zero, since even if some of the
first 2k~ paths were not distinct, they would in any case
be counted equally positively and negatively.

These considerations make it clear that Eq. (17) is cor-
rect, provided that we can justify the assumption that the
chosen path has finite action. This depends on the paths
being somewhat well behaved, a sufficient condition being
that they be piecewise continuously differentiable. In gen-
eral, however, the paths are not at all well behaved. It can
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be shown for instance, that the contribution of paths with
finite action to the integral (17) is zero (see Ref. 3, though
the proof there is not quite correct). However, if we return
to the definition of the integral (17) as a limit of integrals
over piecewise linear paths,* then the above considerations
are valid. Specifically, they are valid at each step in the
limiting process, then they are valid in the limit,

REMARKS

This image-point solution to the infinite square well
bears a striking resemblence to a result> for the free-particle
propagator on certain types of manifolds. These manifolds
are ones that are covered by flat Euclidean or Minkowski
space-time. The similarity is that in both cases an image-
point method used to deal with a situation in which there
are a number of classical paths connecting any pair of
points.

The square well is not a special case of this result, how-
ever. Rather, it appears to be prototype for the general
problem of quantum mechanics on manifolds with bound-
ary. To see this, we first observe that the infinite square well
can be restated as problem of describing the motion of a free
particle on the manifold 7 = [0,1] with the usual topological
structures inherited from R. This also appears to be a
preferable way of stating the square-well problem. The
boundary conditions in the Schrodinger picture, that the
wave function be zero at the endpoints, are then a simple
consequence of probability conservation, that the particle
cannot pass through the boundary of its manifold.

The relationship between the square-well problem and
the problem of manifolds covered by flat space-time is this:
if we form the double® of the manifold 7 on which the par-
ticle moves, by connecting this manifold to a copy of itself
and identifying the corresponding boundary points, then
the resulting space is isomorphic to the circle S;. The so-
lution (12) can then be written in terms of the solutions for
S] as

(beblxa,ta)l = <xb’tb|xa;ta)S] - (x;ntblxa,ta)sh
(20)

where the x}, in the second term indicates the image of x;
on the other half of the double manifold. Each of those
terms is itself an infinite sequence of terms, the first term
accounting for all of the positive terms of (12) and the
second term taking care of all the negative terms.

This result appears to be a special case of a more general
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relation for a manifold with boundary M and its double
2M:

(Xb,tb|xa,ta>M = <xbatb|xa’ta>2M - <xb’tb|xa’ta)2M-

(21)

We observe immediately that the infinite potential barrier
is also a special case of this relation with M = [0,»), and
2M = R both with the usual structures. The topological
problems involved in attempting to prove Eq. (21) are sig-
nificant, and would seem to depend on finding a relationship
between the fundamental group of the double manifold 2M
and the topological structure of M as a manifold with
boundary. This is a very difficult mathematical problem
that is, to my knowledge, unsolved.
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Diamagnetism, gauge transformations, and sum rules

J. L. Friar

Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New

Mexico 87545

S. Fallieros

Physics Department, Brown University, Providence, Rhode Island 02912

(Received 7 July 1980; accepted 15 December 1980)

The dependence of conventional definitions of the atomic diamagnetic susceptibility
on the gauge adopted for the description of the magnetic field is illustrated. The
demonstration of the gauge invariance of the complete magnetic susceptibility leads to
a discussion of the connection between gauge transformations and sum rules.

The conventional treatment! of atomic diamagnetism
starts with the standard nonrelativistic Hamiltonian rep-
resenting the interaction of a system with an external, static,
uniform magnetic field B, adopts the gauge A(r) = (B
X r)/2 for the vector potential, and treating the interaction
term proportional to A2 in first-order perturbation theory
obtains for the diamagnetic susceptibility the result

Ba = —q%(r?)/6mc? = x4/N 4,

where g is the charge of the particle, (r2) is the mean-square
radius of the system, assumed to be spherically symmetric,
N4 is Avogadro’s number, and 8; and x4 represent the
atomic and molar susceptibilities, respectively. In other
problems involving the interaction of particles with mag-
netic fields, e.g., in discussions of the Landau levels, it is
often useful to consider the vector potential in a different
gauge. If B is along the z axis we may, e.g., choose? A’(r)
= — Byf, (where i, is a unit vector along the x axis)
without changing the value of the magnetic field B = V
X A =V X A’. Predictably; if we adopt this gauge and re-
peat the steps that led to the result for 8, in terms of the
vector potential A(r), we find a different result! Since
physical quantities must be gauge independent, it is clear

847 Am. J. Phys. 49(9), Sept. 1981
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that (a) the quantity 8, is not a physical observable and (b)
the discussion of the magnetic susceptibility outlined above,
is incomplete.

In this article we present a somewhat more complete
discussion of the magnetic susceptibility and demonstrate
its gauge invariance. This is quite straightforward and the
conclusion is certainly not surprising. What is probably
more instructive, is the method used in obtaining the results.
It involves the application of a sum rule, similar but not
identical to the one originally written down by Thomas,
Reiche, and Kuhn.? The discussion presented below may,
therefore, be considered also as an illustration of the inti-
mate connection between gauge invariance and quantum-
mechanical sum rules.

We shall consider for simplicity only a single spinless
particle in a spherically symmetric potential V(r). The
Hamiltonian representing this system in interaction with
a uniform static magnetic field is

H= H() + H] + H2
with
Ho=pY2m+ V(r),

© 1981 American Association of Physics Teachers 847



