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Quantum bouncer in a closed court

V. C. Aguilera-Navarro, H. Iwamoto, E. Ley-K0o,? and A. H. Zimerman

Instituto de Fisica Tedrica, Sdo Paulo, Brasil
{Received 5 May 1980; accepted 16 September 1980)

The study of the quantum bouncer in a closed court is used to illustrate some concepts
and techniques of quantum mechanics at different levels.

I. INTRODUCTION

The example of the quantum bouncer, which is a point
mass falling in a uniform gravitational field and bouncing
elastically on a flat horizontal floor, was proposed as a
conceptual aid at the introductory level.! In the present
paper we introduce the quantum bouncer in a closed court,
which differs from the previous system by the presence of
a flat horizontal ceiling where the point mass can also
bounce off elastically. The ball game in the closed court can
be made as interesting as in the open court. In fact, we use
it to illustrate some concepts and techniques of quantum
mechanics at different levels.

In Sec. 11, we examine two alternative ways of solving the
Schrodinger equation for the bouncer in a box. The first one
coincides with that of Ref. 1, and the comparison of the
solutions of both situations, closed versus open courts, is
useful at the introductory level to illustrate the importance
of the modified boundary condition. Of course, now both
Airy functions have to be included. However, some eigen-
functions and energy eigenvalues can be easily obtained in
terms of either Airy function and its zeros, and they can be
incorporated in a geometric construction of the lowest en-
ergy curves for different heights of the ceiling. The second
way of solving the problem consists in constructing and
diagonalizing the matrix of the Hamiltonian of the system,
for which we use the orthonormal basis of eigenfunctions
for the free particle in a box. The matrix method,? usually
studied in the second half of a regular course in quantum
mechanics can be directly applied in this case. Numerical
results and limits on their convergence and accuracy, owing
to the truncation of the basis, can be obtained with the aid
of a computer.

In Sec. 111, we obtain some approximate solutions for the
quantum bouncer in a box. The first one is based on per-
turbation theory,” using the free-particle in a box as the
nonperturbed system and the linear potential as the per-
turbation; therefore, it can be directly constructed from the
matrix elements previously obtained and it is expected to
be valid for small boxes, i.c., low ceilings. The second one
is an asymptotic solution valid for large boxes, i.e., high
ceilings, and we construct it from the exact solution using
the asymptotic forms of the Airy functions.

Some illustrative numerical results of the different so-
lutions studied in this paper are presented in Sec. IV. A
comparison of the exact and approximate solutions permits
us to ascertain the ranges of validity of the latter.

In Ref. 1 and in Sec. I1 A, the Airy functions are directly
taken from available tables,® which are appropriate for
students at the introductory level. However, students at a
more advanced level may be interested in studying the an-
alytical forms of the Airy functions. With such students in
mind we include an Appendix dealing with the explicit
construction of the integral representations of these func-
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tions. Our treatment is based on the solution of the Schro-
dinger equation in the momentum representation.?

II. EXACT SOLUTIONS OF THE
EIGENVALUE PROBLEM

The potential energy for the boxed-in bouncer is given
by

© y=0
Vy)={mgy 0<y<yp (1)
[e o] y=y0’

where pg is the height of the ceiling. Then the stationary
states of the quantum bouncer in the closed court are de-
termined by the Schrédinger equation

2 2
(— hd mgy) Y(y) =E¥(), (22)

2mdy?
subject to the boundary conditions
Y(y=0)=0, (2b)
Y =yo) =0. (2¢)

It is useful to introduce the characteristic length
| = (h2/2m2g)\/3
and the dimensionless height and energy

z=y/l, €= E/mgl

A. Airy equation

We follow Ref. 1 in using the dimensionless coordinate
= z — e and reducing Eq. (2a) to the Airy equation

d?
i
with the general solution
W(x) = M Ai(x) + N Bi(x).
The boundary conditions, Egs. (2b) and (2c), become
W(x =—¢)=0=M Ai(—e€) + N Bi(—¢),
V(x=zo—€¢)=0=M Ai(zo— €) + N Bi(zg — ¢€),

which can be viewed as a system of two linear homogeneous
algebraic equations for the unknown coefficients M and V.
Such a system can have a solution different from the trivial
one M = N = 0, only if its determinant vanishes, i.e.,
Ai(—e¢) Bi(—¢)
. . =0
Ai(zo—€) Bi(zg—¢€)
For a given height of the ceiling, or zo, this equation can be

V(x)=0

(3)
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satisfied only for discrete values of €, which are the energy
eigenvalues. For each of these eigenvalues, the ratio of the
coefficients M and N is fixed by either of the boundary
condition equations, which in turn determines the eigen-
function. Thus the solution of the eigenvalue problem is
reduced to the numerical solution of Eq. (3).

Obviously, the open court situation of Ref. (1) can be
recovered from our solution in the limit zg — <, which re-
quires N = 0 because of the divergent behavior of Bi(zo
— ).

Actually, some particular solutions of the quantum
bouncer in the closed court can be easily constructed based
on the zeros of one or the other of the Airy functions. Let
us consider first those solutions with & = 0, then the
boundary condition equations become

Ai(—€) =0, Ai(zo—¢€)=0.

Therefore, these solutions are possible when the energy is
the negative of one of the zeros of the Airy function and the
height of the ceiling is the difference between two of those
Zeros,

(4a)

Similarly, for M = 0, the solutions involve the zeros of the
other Airy function, which are related to the energy and
height by

€= —Qq,, Zo= day — d

€= _bn,

(4b)

We use Eqgs. (4a) and (4b) to construct Fig. 1, which gives
the variation of the lowest energy eigenvalues as a function
of the height of the ceiling. Our construction starts from the
graphs of the Airy functions 4i(x), Bi(x) shown on the
left3; actually, only the positions of their zeros are needed
and they are projected on the energy axis. The straight line
through the origin and with slope one corresponds to the
potential energy at the ceiling. Next, from each of the zeros
of the Airy functions on the energy axis we draw straight
lines with slopes zero and one, using dashed lines for 4i(x)
and dashed-dotted lines for Bi(x). The intersections of one
set of lines or the other in the first quadrant of the (zy, €)
plane satisfy the conditions of Eqs. (4a) or Egs. (4b), re-
spectively. Consequently, such intersections belong to the
energy curves and will serve as a reference for the tracing
of the latter. Actually, this can be done fairly easily and
directly by interpolation between successive intersections
of the same order along the horizontals, in the region above
the potential energy line. The portions of the Airy functions
corresponding to the eigenfunctions of the particular states
under consideration can be immediately identified on the
left graph of Fig. 1. It is illustrative to verify graphically that
they satisfy the boundary conditions and that their number
of interior nodes equals the order of their excitation.

Zg = b,,' - b,,.

B. Matrix of the Hamiltonian

Another way of solving the Schrédinger equation [Eq.
(2a)], :

d?
(— 2 + z) Y (z) = e¥(2),

consists in writing the wave function as a linear combination
of a complete set of orthonormal functions that satisfy the
boundary conditions [Egs. (2b) and (2¢)],
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V()= & \/isin mkz, (5)
k=1 Z0 Zp
The Fourier sine basis corresponds to the eigenfunctions of
the free-particle in a box. Now, the problem is reduced to
the determination of the expansion coefficients cx. This can
be accomplished by substituting Eq. (5) in the Schrodinger
equation, and making use of the orthonormality of the basis
functions to obtain a system of linear homogeneous alge-
braic equations for the unknown ¢’s. Such a system has
nontrivial solutions only if the determinant of its coefficients
vanishes, which will occur only for discrete values of the
energy.
The above is equivalent to the construction of the matrix
of the Hamiltonian
k')

d2
Hypr = <k‘(— E-'_ z)
z 2 ’
=— 0sinm(—d—2+z)sink1”d2
Zp JO dy) dz Zp
_ kz,rz fg (_l)k—k/_l
2 2\ (k- k)2
_ (=1)k+k — _
TS (1 — dpr) (62)

and its subsequent diagonalization?
detl(Hkk' - Gﬁkkf)l =0. (6b)

In principle the expansion of Eq. (5) involves an infinite
number of terms. In practice, the method has to be applied
with a finite number of terms, i.¢., the basis is truncated. In
general, for a given number of terms the lower energy states
are more accurately determined than the higher-energy
ones. The convergence of the energy eigenvalues € and the
eigenfunction coefficients ¢, can be tested by changing the
number of terms included in the calculation.

Actually, an expansion of the type of Eq. (5) with a finite
number of terms can be viewed also as a trial function in
which the coefficients ¢ are variational parameters. Then
it is straightforward to show that the variational method
leads to the same Eqs. (6a) and (6b).

29
+ 20 b +
%o 2) kk

III. APPROXIMATE SOLUTIONS

A. Perturbative solution

We construct a perturbative solution based on the Ray-

Ailx),--~" L.~
04 > lo A
— ; ' ; ——Z,
N o 2 4 6 8 10
Bilx
X

Fig. 1. Airy functions and lowest energy curves of quantum bouncer inside
closed courts with different ceiling heights.
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Table I. Lowest energy eigenvalues ¢; for different ceiling heights z.

zo 1 2 4 6 8 ©

€ 10.368 5072 3.4498676 2.3554952 2.3381349 2.3381074 2.33810741
€ 39.9787448 10.8748178 45324183 4.0947123 4.0879574 408794944
€3 89.3266345 23.2097282 7.6007765 5.6628580 5.5216635 5.52055983
€4 158.4137898 40.4803281 11.9001382 7.5376446 6.8162658 6.78670809
€5 247.2401893 62.6862965 17.4415633 9.9568366 8.1682626 7.944 13359
€6 355.8058147 89.8273394 24.2209911 12.9426218 9.7841987 9.0226508 5
€ 484.1106574 121.9033230 32.2363519 16.4878585 11.7295506 10.04017434
€3 632.1547148 158.9142004 41.4866619 20.5877636 14.0027131 11.008 52430

leigh-Schrodinger perturbation method,? taking the free
particle in a box as the nonperturbed system. Consequently,
the nonperturbed Hamiltonian is simply the kinetic energy
and the perturbation is the linear potential. Using the re-
spective matrix elements which appear explicitly in Eq.
(6a), we can identify the lowest-order contributions to the
energy eigenvalues:

e = (k|Holk) = k?n?%z3,
A€ = (k| V|k) = z0/2,

(7a)
(7v)

o 5 SKIVIK) K\ VIE) (@)Zz_%
A= T (0 — ¢ 72 722
—1)k—k — - K —
X (=1 P« Dk 1)2/(/(2 —k’2). (7c)

(k - k’)? (k+ k)2
It is easy to verify that the ith-order contribution is pro-
portional to 232 resulting from the zj and (z3)/~! factors
coming from the numerators and denominators, respec-
tively.
For the ground state, kK = 1, and the energy has the ex-
plicit perturbation expansion
2
6=1+22_000109726z4+---,  (7d)
) 2
which is expected to be valid for small values of zg, i.., low
ceilings. Naturally, higher-order contributions can also be
calculated not only for the ground state but also for the
excited states.

B. Asymptotic solution

In the case of very high ceilings, i.e., very large values
of zp, we can construct the corresponding solutions using
the Taylor expansions and the asymptotic forms of the Airy
functions for the upper and lower elements of the deter-
minant in Eq. (3), respectively. The Taylor expansions have

the argument € + a, = 6 — 0, because the energies tend
asymptotically to their open court values for very high
ceilings,

Ai(=€) = Ai(a,) — 6A4'i (a) + -+~ —8A4'i (a,), (8a)
Bi(—¢) = Bi(a,) — 8B'i (an) + - ~ Bi(a,). (8b)

The asymptotic forms? are obtained from

Ai(x) = (1/2)x~ /4 e~ f(=0), (9a)
Bi(x) = x~ /4 eS8 £({), (9b)
where
$=(2/3)x%?2
and

lim f(~{) = s}im A9.

>

Substituting Eqs. (8a) and (8b) and Egs. (9a) and (9b) in
Eq. (3), we obtain

6 = ~Bi(a,) e=2%0/24’i (a,) (10a)
More explicitly,
=g — M —(4/3)(z0+an)3/?
enl(20) = —an = =5 )’ , (10b)

showing how the asymptotic approach of the energy to its
open court value is dominated by the exponential factor.

The bondary condition at the floor combined with Egs.
(8a) and (8b) gives the relative proportion of the Airy
functions in the eigenfunction

N _od%i(an) _
M Bi(a,)

showing the decreasing contribution of the irregular Airy
function as the ceiling gets higher.

_% e—2%0

Table 11.  Comparison of the exact, perturbative, and asymptotic values of the ground-state energy for different ceiling heights zg.

20 € € (pert.) 20 € €1(asymp.)
0.2 246.840108 3 246.8401083 2.6 27101673 2,609278
0.4 61.8849994 61.8849994 3 2.5090111 2.496 399
0.6 27.7154256 27.7154256 4 2.3554952 2.356740
0.8 15.8208074 15.8208074 4.4 2.343968 5 2.344 365
1.0 10.368 5072 10.368507 1 5 2.3390493 2.3390983
1.2 7.4516168 7.4516167 6 2.3381349 2.3381358
1.4 5.7312979 5.7312972 7 2.3381079 2.33810789
1.6 4.6481256 4.6481232 8 2.3381074 2.33810741
1.8 3.9346635 3.9346556 9 2.3381074 2.338107 41
2.0 3.4498676 3.4498449
2.2 31135291 3.1134705
2.6 2.7101673 2.709858 5
3.0 2.5090i111 2.5077446
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IV. NUMERICAL RESULTS AND DISCUSSION

A sample of numerical results for the exact and ap-
proximate solutions studied in Secs. 1 and I11 is presented
in Tables I and 11.

Table I contains the lowest energy eigenvalues obtained
from the diagonalization of the matrix of the Hamiltonian,
Sec. II B, for finite ceiling heights. For a given value of z,
the diagonalization procedure yields the energy eigenvalues
in the corresponding column. Such values can be taken as
the exact ones up to the number of digits included, because
they do not change when the dimension of the matrix is
increased. Naturally, this dimension is much larger than
8 and has to increase for larger values of z. For the sake of
completeness, we include in the last column of this table the
asymptotic values of the energy eigenvalues, which corre-
spond to those of the quantum bouncer in the open court,
—a,. Obviously, the values in this table can be used to
complete Fig. 1, which we have done. The corresponding
energy curves are monotonically decreasing as the height
of the ceiling increases; their variation is dominated by the
form k225, Eq. (7a), for very small values of zq, while they
approach rapidly their asymptotic values, Eq. (10b), for not
so large values of zy, slightly larger than —a,,.

In Table 11, we show the comparison of the exact nu-
merical results with those from the perturbative solution,
Eq. (7d), and the asymptotic solution, Eq. (10b), for low and
high ceilings, respectively. From the left-hand side of the
table we can see that the perturbative solution is indeed very
good for very low ceilings and quite acceptable even for not
so low ceilings. Similarly, the right-hand side of the table
shows that the asymptotic solution is also very good for high
ceilings and fairly reasonable for not so high ceilings. Here
we have restricted our analysis to the ground state, but
obviously it can be applied to the excited states, too.

ACKNOWLEDGMENTS

This work was supported by FINEP, Rio de Janeiro,
under contract 522CT. One of us (HI) has a fellowship with
CAPES and another (ELK) had the financial support of
FAPESP, Sio Paulo, Brasil.

APPENDIX

The Schrodinger equation for the linear potential in the
momentum representation? has the form

P2 eind -
(Zm + mgih dp) $(p) = E®(p).

The wave functions in the coordinate and momentum rep-
resentations are related to each other through a Fourier

(A1)

transformation

-1 =
\I/(y)-\/z_ﬂﬁf_memh ®(p) dp.

By comparing Eqgs. (2a) and (A1) we see that the latter,
being of first order, is easier to integrate. In fact, it is directly
integrable and its general solution is

®(p) = $(0)e V/ik)EP/mg—p3/6m?e) (A2)

The corresponding solution in the coordinate representation
is

Y() = <I>(0) f e1/it) Py~ E/me)+p¥fem’e] dp
2«1)(0)

-8 f e b

where the last line is obtained from the previous one by di-
viding the integration interval into two portions, and in the
first one from — = to 0, the integration variable is changed
from p to —p.

The square integrable wave function of Eq. (A3) can be
identified with the regular Airy function as given by its
integral representation

] dp, (A3)

(3a)~3rAi[£(3a)~"/2x] = j; " cos(a? + xt) dt.

On the other hand, the irregular Airy function with the
integral representation

(3a)~'\3xBi[+(3a)~"/2x]
= j;w [e=ar%xt + sin(ar3 + x1)]dt,

can not be directly obtained from Eq. (A3), because it is not

. square integrable in the entire interval —» < x < o,

However, a combination of both Airy functions can be ob-
tained from the first line of Eq. (A3) by changing the path
of integration in the complex p plane from that of the real
axis to one starting from (0, ~i =) to the origin along the
negative imaginary axis and then going out to (=, 0) along
the positive real axis. It is easy to check that the real and
imaginary parts of such an integral correspond to the reg-
ular and irregular Airy functions, respectively.
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" .. Education should turn out the pupil with something
he knows well and something he can do well. This intimate
union of practice and theory aids both. The intellect does
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not work best in a vacuum. . . .

Alfred North Whitehead
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