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Thus for an exoergic reaction, the desired triangle mng
is drawn, and then circles a, b, and 4 are drawn as before
with centers at p, but with radius £ > 1 times as large as for
an elastic collision. Circle e is not so affected.

Figure 3 illustrates an exoergic 90°C case with k = 1.1.
Note that angle vy;, v; decreases as k increases, other things
being unchanged.

For endoergic reactions, k < 1, the circles a, b, and d
have smaller radii, than for elastic, by the factor k. Evi-
dently, for k «< m;/m; < 1 (particles nearly sticking to-
gether) the circle a, outer bound, can be well inside circle
e, everywhere. Then for a 90°C vy; is nearly antiparallel to
¥2i.

In the last step of going from Fig. 3 for an inelastic col-
lision to the construction analogous to Fig. 2, as before
triangle mnr must be rotated through (180° — ¢), in the
plane of the figure, to align V; and V. as parallel. Then
triangle mng must be redrawn k times as large in order that
all parts of the final drawing have the same scale. These two

operations give V; = V., as required by conservation of
momentum. Triangle mng may then be rotated about V,
to any orientation.

This analysis has only used conservation of linear mo-
mentum and conservation of energy. If the two particles
change their internal energy by spinning, or through other
degrees of freedom, then the collision is inelastic (usually),
and the construction still applies. Nothing is assumed about
whether the force of interaction is central since conserva-
tions of momentum and energy are always required and
they are the basis of the construction. However, the prob-
ability of reaching various possible final configurations will
depend on the details of the force of interaction.

In summary, the wide variety of cases of 90°C (orthog-
onal final velocities) for any mass ratio, any degree of
elasticity (except k = 0 where 90°C is meaningless) and the
wide variety of ratios of initial speeds may be obtained from
the simple construction shown here.
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The isotropic oscillator in a uniform magnetic field is an exactly soluble quantum
problem which can serve as a useful model of an atom in a magnetic field of arbitrary
strength. The exact eigenvalue spectrum is derived, compared with perturbation

theory for low field strengths, and shown to yield a quasi-Landau spectrum for high
field strengths. The frequency, polarization, and relative intensity of the spectral lines
of the Zeeman effect are determined as a function of the field strength. The effect of
the field on atomic size and on the atomic wave functions is discussed; the three-
dimensional system is shown to collapse into a needlelike one-dimensional system for

a sufficiently intense field.

I. INTRODUCTION

Magnetic fields have long been used in the study of
atomic and molecular structure. Although a static uniform
magnetic field may produce a dramatic modification in the
number and polarization of atomic spectral lines through
removal of level degeneracy, the energy changes involved
are generally small for the range of field strengths ordinarily
encountered in the laboratory. Indeed, it is not difficult to
show that the frequencies wy, w;, w, associated, respectively,
with the zero-field, paramagnetic, and diamagnetic terms
of an atomic Hamiltonian satisfy w;/wo~ wy/w; < 1 even
for fields as great as 105-10¢ G. Thus perturbation theory
has customarily provided a suitable analytic method for
treating the effects of magnetic fields on atoms.

The investigation of atoms and molecules in intense
magnetic fields, however, is currently an active area of re-
search. Atoms in the vicinity of neutron stars, for example,
may be subjected to magnetic fields of 10!2 G or more.!
Under these circumstances the magnetic terms of the
Hamiltonian will dominate. The same effects can be sim-
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ulated terrestrially by subjecting highly excited atoms or
excitons in semiconductors to large, but accessible, labo-
ratory fields. Fields up to about 4 X 10* G have permitted
atomic physicists to examine the transition of the spectrum
characteristic of the Coulomb potential to a quasi-Landau
spectrum lying above the field-free ionization limit.2 The
theoretical treatment of these and similar systems can not
be accomplished through perturbation theory.

Of all atomic systems the hydrogen atom for obvious
reasons has always been a system of particular importance
in the investigation of the interactions of bound electrons
with external fields. A partial understanding of the behavior
of a hydrogen atom in a strong magnetic field may be ob-
tained by an extension of the Bohr model to include the
Lorentz force. Such a semiclassical model is exactly soluble
and leads to useful expressions for the quantized electron
energies and orbital radii.># It cannot replace a purely
quantum description, however. Unfortunately, despite the
seeming simplicity of the one-electron atom in a magnetic
field and despite the many theoretical studies which have
been devoted to it, there is no comprehensive quantum
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theory of this system valid for arbitrary field
strengths.5®

The interaction of a one-electron atom with an arbitrarily
strong magnetic field is an interesting problem not only for
the researcher, but for the teacher as well. It would be
highly instructive to supplement the standard perturbation
theoretic treatment of the hydrogen atom Zeeman effect,
paramagnetism, and diamagnetism with a discussion of an
alternative three-dimensional spherically symmetric one-
electron quantum system for which an exact analytic so-
lution incorporating the magnetic interaction is available.
For small field strengths one can then expand the system
cigenvalues in terms of a suitable field-dependent parameter
and compare with the results of perturbation theory. With
the increase in field strength the transition of the energy
spectrum from that characteristic of the initial spherical
symmetry to one characteristic of the lower cylindrical
symmetry can be seen. The frequency, polarization, and
relative intensity of spectral lines in the Zeeman effect can
be derived exactly for intense magnetic fields. Moreover,
having the exact wave functions one can demonstrate the
extreme contraction of the system in the plane perpendic-
ular to the field as the field strength is greatly increased.
This alternative quantum system would thereby display a
number of the features that make the theoretical and ex-
perimental research on “real” atoms in intense magnetic
fields so interesting.

The charged isotropic harmonic oscillator is an example
of such a quantum system, i.e., an electron subjected si-
multaneously to a potential (1/2) mw?r? and to a uniform
magnetic field can be treated exactly without recourse to
either perturbation theory or semiclassical approximation.’
The solubility of the Schrodinger equation in this case stems
from the similarity of form of the two-dimensional oscillator
potential and the diamagnetic interaction term.

There are, of course, differences between a harmonic
oscillator and an atom. An electron in an oscillator potential
does not have an ionization threshold as does an electron
in a Coulomb potential. Moreover, as pointed out by Katriel
and Adam the oscillator in a magnetic field is a system with
infinitely degenerate bound states.? This infinite degeneracy
can be accounted for in terms of a noncompact invariance
group.? The invariance group of the nonrelativistic hydro-
gen atom is O(4), a compact group.!%1! SO(4,2) is a non-
compact dynamical group of the hydrogen atom, but it is
also a noninvariance group.!? Nevertheless, there are strong
enough correspondences between a one-electron atom and
the isotropic oscillator for the latter to provide a simple and
useful atomic model—a model that has been frequently and
profitably used since the days of Lorentz’s classical electron
theory.

In the remainder of this article I present the details of the
solution and explore the suggestions made above.

II. SOLUTION

The Hamiltonian of a charged particle oscillating iso-
tropically at frequency wg and subject to a magnetic field
B characterized by a vector potential A is

H =p?/2m + mwjt?/2 — eA -p/mc + A - A/2mc?.
(D

This is derived by the usual minimal substitution p — p
— eA/c in the field-free Hamiltonian followed by algebraic
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expansion with imposition of the Coulomb gauge V-A = 0
or, equivalently [p,A] = 0. A suitable vector potential for
a uniform magnetic field is A = —(1/2)r X B; this satisfies
the choice of gauge. The Hamiltonian can then be expressed
in the form

H = p?/2m + mwir2/2 — eB - L/2mc + e2B*r} /8mc?,
(2)

where L is the orbital angular momentum operator and r |
is the component of the coordinate operator r perpendicular
to B. Without loss of generality one can choose a coordinate
system such that B = BZ. The Hamiltonian can then be
written as the sum of two commuting terms:

H=H|+H,4, (3a)
where
Hy = pY/2m + mwiz?/2, (3b)
H, =@2+pH/2m+ mwi(x2+y?) /2 + w,L,.
(3¢c)
Here
wy = —eB/2mc (3d)
is the Larmor frequency (positive for the electron since e
= —|el), and
w = (w§ + |wr| )2 (3e)

Since [H), H,] = 0, the solution to the Schrodinger
equation ,

H|®) =E|®) (4a)

is the tensor product of the solutions of H| and H | indi-
vidually, i.e.,

|1®)=|e ®|er); E=Ej+E;, (4b)
where
Hyley) = Ejley) (4c)
and v
Hile,)=E,|ley,). (4d)

Moreover, since [H |, L,] = 0, the state vector |¢, ) can
be constructed to be an eigenvector of L,,

Lle,)=mhle,). (de)

Thus the initial three-dimensional problem has been
reduced to the problems of (a) a one-dimensional oscillator
along the field axis and (b) a two-dimensional oscillator in
the plane perpendicular to the field with a component of
angular momentum on the field axis.

The solution to the one-dimensional oscillator is well
known; I merely record it below in notation suitable for
future use. Defining the customary annihilation and cre-
ation operators

a; = (Boz + ip/Bo)/V/ 2, (5a)
al = (Boz = ip/Bo)/V/2, (5b)

with
Bo = (mwo/h)V/? (5¢)

and
la.,al] = 1. (5d)
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One can express the Hamiltonian in terms of the diagonal
number operator

N, =ala, (5e)
as follows:
Hy = hwo(N, + 1/2), (5f)
where
N:|e1) = noley). (Sg)
The eigenvalues and eigenvectors are then
E|(no) = hwo(no + 3), (5h)
l o) = (a})"]0)/+/ng!. (5i)
Recall that
allno) = (no+ 1)'2|ng + 1); az[no) = nf*|mo = 1).
(5))

The two-dimensional isotropic oscillator with angular
momentum can be solved in an analogous way. From Egs.
(5a) and (5b) one constructs mutatis mutandis the opera-
tors a, ay, a ', a} for excitations in the x-y plane; 8o is re-
placed, however, by

B = (maw/h)!/2. ()

The tensor product |¢ | ") ® |¢, W), where each factor
is constructed as in Eq. (5i), is not in general an eigenvector
of L,. To construct such eigenvectors one takes advantage
of the cylindrical symmetry about B to introduce the com-
muting operators for right and left circularly polarized
quanta

a, = (ax — iay)/\/ia (7a)
a1 = (ax + iay)\/2. (7b)

The nonvanishing commutation relations are similar to Eq.
(5d),

lar, al] = [as,a]] = 1. (7c)
The number operators analogous to Eq. (5e¢) are
N, = ala,, (7d)
where
Nylg L oy = ny| @ | () (7e)
and
N; = alay, (71)
where
Nyl (D) = ny| @ | (rn)). (7g)

The eigenvalues n, and n; give the number of quanta of
angular momentum A parallel or antiparallel to B, respec-
tively.

- The Hamiltonian H | is now expressible in the diagonal
representation

H, =ho(N, + N;+ 1) + hor (N, — N)), (8a)

from which follows readily the eigenvalues and eigenvec-
tors

E  (nn) = hw(n, + ny+ 1) + hop(n, —ny), (8b)
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(ah)rr(al)m
(nenp)y = 22702 00).

| Y1 ) \/m—ﬁ l ) (8¢)

Thus the entire solution to Eq. (4a) is given by

E(nmng) = (n, + mp + Dhw + (ng + 2)hwo
+ (n, — nhwr, (92)

\n, nif{ o H\no '

|nrn1n0) = (ar) (a}-) (az) |000). (9b)

A n,!n,!no.’

The wave functions are obtained by projzction of Eq. (9b)
onto a coordinate basic bra,

& (rrmino(r) = (r|n,mng). (9¢)

The ground-state wave function is determined by solution
of the differential equations

(r|a;|000) = a;(r, — ihV)POO(r) =0 (i =r,l,z).
(9d)

The excited-state wave functions can then be generated
recursively through sequential application of the creation
operators,

III. DISCUSSION

Let us consider first the energy spectrum for several in-
teresting cases.

In the absence of a magnetic field w; = 0 and w = wyq.
The energy eigenvalues, Eq. (9a), reduce to

E(n,ning) = (n, + np + no + Hhwo = (n + Hhw,,
(10a)

the spectrum of the isotropic oscillator. The energy depends
only on n = n, + n; + ng and each level of given n has a
degeneracy g, = (n+ 1)(n+ 2)/2. Levels of even (odd) n
comprise states of even (odd) / with0 </ < n.

In the opposite limiting case of an unbound particle, one
has wo = 0 and w = |w,|. The energy of motion perpen-
dicular to the field becomes

E | (nny) = |wr| [(n, + np+ 1) + (sgnwp)(n, — ny))
(10b)

electron

positron

{2wL(nr +3)
2]wr|(n + %)

and is therefore composed of right or left circularly polar-
ized quanta depending on whether the particle is charged
negatively or positively, respectively. From Eq. (3b) we see,
however, that the energy of motion parallel to the field be-
comes

E| = (Hmv?, (10c)

where the velocity along the field v, can be any real number
(for which |v,| /¢ « 1 so that the Schrodinger equation is
valid). The total energy of the so-called Landau levels is
therefore (for an electron)

E(niv;) = B)mol + 2wp(n,+3).  (10d)

Since E(n,n;;v,) is independent of n;, the Landau levels are
infinitely degenerate and span a continuum of energies. (It
should be noted that the canonical momentum p is not
generally proportional to the velocity v of a particle inter-
acting with an electromagnetic field; nor is p?/2m to be
interpreted as the particles’s kinetic energy. From the cor-
rect relation p = mv + eA/c it follows that the old associ-
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ations are retained for only those components p; for which
A,' = 0)

In the general case where neither wg nor w is exactly
zero, the eigenvalues, expressed in terms of the dimen-
sionless parameters

e(nmno) = E(nynino)/hwo, (11a)
o = wrfwg (11b)
are
e(nmng) = (n, +my+ 1)(1 + a2 4+ (ng+ )
+ (n, — n)a. (1lc)

For a low magnetic field strength, o« << 1, the Taylor ex-
pansion of (1 + a2)!/2 to terms in o leads to

€ (mpnng) = (n, + ny + no + 3) + (n, — npe

+ @+ m+ Do (12a)

The three terms may be identified, respectively, with the
expectation values of (i) the isotropic harmonic oscillator
Hamiltonian

Ho/hwo = (p%/2m + mwZr?/2)/hwy

=N,+N+N,+3 (12b)
(ii) the paramagnetic interaction
Vi/hwo = wL./wo = aN, — Ny); (12¢)
and (iii) the diamagnetic interaction
Vaolhwo = (3)mwi(x? + y?)/hwo
= ®2[(N, + N + 1) + (ala] + a,a)].  (12d)

Note that ¥, does not contribute in second order to the
energy. Hence Eq. (12a), accurate to a2, is equivalent to
a first-order perturbation calculation in each interaction
‘Hamiltonian.

Over what range of field strengths is perturbation theory
reasonably applicable? Equation (12a) is valid so long as
(1 + a?)1/2~1 + ($)a2. This relation is satisfied to within
an error <0.1 for « up to~1, i.e., for w; ~ wy. Let us as-
sume that the oscillator restoring force acts over a distance
of roughly one Bohr radius, i.e., Fosc = kag, and is equal to
the electrostatic attractive force within a Bohr atom at that
distance, i.e., Fo) = e2/a3. It then follows that the charac-
teristic oscillator frequency is

wo = Vk/m = (e2/maj)"/2 ~ 4 X 1016 sec™!
and therefore an upper limit to B will be
Bmax ~ 2mcwg/|e| ~ 5 X 10° G.

For large magnetic field strengths, @ > 1, Eq. (12b)
reduces to (for electrons)

€”(nmng) = 2(n, + Ha + (no + ). (13)

In Fig. 1 is shown the variation in energy with B for all
oscillator states in the levels n = 0,1,2, (n = n, + n
+ no).

Having obtained the energy eigenvalues and state vectors,
one can determine the essential characteristics of the Zee-
man effect for this system, in particular the frequency,
polarization, and relative intensity of the spectral lines
observed in directions perpendicular and parallel to the
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magnetic field. We consider within the electric dipole ap-
proximation the radiation produced by transitions from an
excited state |n,nng) to the ground state |000).

Suppose at time ¢ = 0 the system is characterized by the
state vector

| ¥n,mne(0)) = cosy|000) + siny|nnng), (14a)

where vy is an arbitrary real angle. For an ensemble of atoms
v can assume all values over the range 0 to 2x; final ex-
pressions for observable quantities (e.g., spectral line in-
tensities) should therefore be averaged over y. At time ¢
later the state vector has evolved under the time translation
operator e~'H!/" and can be expressed as

I‘l’n’nmo(t)) = @~ iw0e(000) [COS‘YIOOO)
+ e~ siny | n,mng)], (14b)
where
Qrrmino) = [e(n,nyng) — €(000)]
= wol(n, + m)(1 + a2 + (n, — ) + ng).  (14c)
The expectation value of the electric dipole operator D
= ex in the state (14b) is given by :
(D) (1) = (¥nynnol D ¥mimo) - (152)

Expressing the components of x in terms of the creation and
annihilation operators allows one to evaluate facilely the
matrix elements appearing in (152); (D)(¢) then reduces
to

(D)) = {B— (1 + a?)~Y4sin2y[(% cosQ100)
0
+ ﬁ SinQ(lm)t)Bn,lﬁmoanoo

+ (% cosQO10s — p5inQ(010)£)6,, 66,100]

7
S e
—~ 120 ~ /9 o
] ) WO
C.' /
[y / o
< / O
/
1.0 / )
w / o 7
’/ ’/
/’ //
100 s 5ok
/ /
/ /
/ /
y /
7 //
a0 / /

o2 4 6 b ! 2 3

O
Fig. 1. Variation of energy eigenvalues with magnetic field strength for
all oscillator states in the levels n = 0, 1, 2, where n = n, + n; + no.
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+ sin2y[2 cosQOD¢18,,00,,00n,1, (15b)

e
V2B
where

Bo = vV mwy/h.

One sees that only those states for which n = n, + n;
+ no = 1 can contribute to the spectrum. Moreover, the
expectation value of the dipole moment either rotates
(counterclockwise or clockwise, the observer facing the
emitter) about B or oscillates along B depending on whether
the excitation is », /, or z, respectively.

In the semiclassical treatment of spontaneous emission
the radiation frequency corresponds to the frequency of
oscillation or rotation of the electric dipole. Thus the
spectrum can consist of at most the frequencies

Q(100) = o[(1 + a?)/2 + ],
Q10 = wo[(1 + a?)!/2 = a],
QU0 = g0

For observations transverse to the magnetic field, e.g.,
along the x axis, only the dipole components (D, ) (¢) and
{D,)(t) contribute. A dipole oscillating along the y axis
radiates light polarized perpendicular to B (o polarization)
at frequencies (190 and Q019); 3 dipole oscillating along
B radiates light parallel to B (7 polarization) at the un-
perturbed frequency wo. For low field strengths the
frequencies of the o-polarized light reduce to wg + w;. The
intensity of each spectral line is proportional to the square
of the time-independent coefficient of the dipole component
which produces it and to the fourth power of the radiation
frequency. At low field strengths the o to 7 intensity ratio
is easily seen from Eq. (15b) to be 3:1. Thus the transverse
spectrum is the normal Zeeman triplet: two g-polarized
lines shifted +w; from the 7-polarized central frequency
wp and with relative intensities

I(wo + wp )l (we):I(wy — wr) = 3:1:3.

The high-field spectrum, however, is quite different. For
a — « the frequency QU190 — 24, = w, (the cyclotron
frequency); the intensity of this line increases relative to that
of the central frequency as 8a3. The frequency Q010
— wp/a and its intensity relative to that of the central
component falls to zero as &~3/32. The symmetric triplet
therefore collapses into an asymmetric doublet as B in-
creases greatly.

An analysis similar to the above can be performed for
observations along the magnetic field, i.¢., along the z axis.
From Eq. (15b) it is clear that the observer receives radia-
tion only from the two components of (D)(z) rotating
counterclockwise and clockwise in the x—y plane. These two
spectral lines at the weak-field frequencies wp + w are said

Table I.

(15¢)

Zeeman effect in the statesn =n, + ny + ng = 1.

to be polarized o* and ¢~, respectively. The weak-field.
relative intensity ratio is /(wp + wp):/{wp — wr) = 1:1. This
again corresponds to the normal Zeeman effect. For large
fields, however, the frequency of the ¢~ component falls to
zero as (2a)~! and its intensity relative to the ¢+ component
diminishes as (2a)~8. Thus the Zeeman doublet collapses
into a single o line at the cyclotron frequency w.. A sum-
mary of the Zeeman effect is given in Table L

We consider now the effect of the magnetic field on the
size of the oscillator atom. One possible measure of this
attribute is the expectation value of the squared components
of the coordinate operator r. In view of the cylindrical
symmetry about B, we will evaluate z2 and p? = x2 + y2,
Expressing these operators in terms of the appropriate an-
nihilation and creation operators and using Eq. (5j) (and
analogous relations for the r and / quanta) one readily ob-
tains

(mmnolz2|n.ning) = (no + h/mwo,  (16a)
(nyng| p?|nming) = (n, + np + 1)h/mow.  (16b)
Thus
(p2))2 n+nm+1
M Immng _ (1 4 q2y-1/a [T D)
(e D o+ | (9

The ground state of the isotropic oscillator is spherically
symmetric. Placed in 2 magnetic field, the electron distri-
bution of the atom is distorted so that

2\ 1/2
ss%;gi—g=ﬁ(1+a2>-'/4.

For a low field @ — 0 and £ — /2, as expected since for
spherical symmetry {x2) = (y?) = (z2) = (3) (r2). For
high fields o — ® and £ — /2 /a « 1. The atomic diam-
eter in the x—y plane is severely contracted whereas its di-
ameter along z is unaffected. The atom becomes needle
shaped or, in effect, a one-dimensional system.

One can see more clearly how this comes about by ex-
amining the ground-state wave function directly. The os-
cillator wave functions can be derived in the standard
manner from Egs. (9¢) and (9d). Alternatively, the
ground-state wave function can be obtained simply and
immediately by noticing that for n, = n; the state has zero
angular momentum. It is therefore the ground-state ei-
genfunction of Hj + H for L, = 0. [See Eqgs. (3b) and
(3¢).]

Thus

(16d)

PO (r) = do(x;w)bo(y;w)do(z;wo),  (172)

where go(u;v) is the one-dimensional oscillator ground-state
wave function of coordinate u and frequency ». Substitution
of the well-known expression for ¢ leads to

Observation Frequency akl a>>1 Polarization Relative intensity akl a>1
Transverse (X)
QU0 = (1 + )2+ wp wot wp w.=2wL o 31 + a?)l/2[Quo0N4 3 8o
QO = o(1 + ) /2~ w; wo—wr  wo2a o 31 + a?)1/2[QO100}4 i a~3/32
Q00D = wo wp wo w wd 1 1
Longitudinal (2)
QU0 = gyo(1 + a)V/2 4wy wo+ wr W = 2w ot 1 1 1
QO = o(1 + a?)/2—w, wo—wr  wo/2a ¢ [Q(010) /((100)]4 1 (2a)~
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Q(ooo)(r) - (1 + a2)1/4(mw0/7rh)3/4
X g—mwoz?/2hg —mawo(1+a?)V/2p%/2h (17b)
For field strengths such that & < 1, Eq. (17b) reduces to
PO00)(r) = [1 + (4)a2]e~mwor?a/hgann(r), (17c)

where ¢goo(r) is the ground-state wave function of the iso-
tropic oscillator. The wave function is contracted in the x-y
plane for large p = (x2 + 2)!/2. When the field strength
is so intense that & >> 1 Eq. (17b) becomes

cI)(OOO)(r) = al/2(mw0/7rh)e—mwozz/Zhe—mwoapz/Zh.
(17d)

The wave function is severely attenuated in the x-y plane
except for p ~ 0; thus the electron distribution is “needle-
like” along the field axis.

As a final point of interest we look at the macroscopic
response of an ensemble of ground-state oscillator atoms
to a magnetic field. The isotropic oscillator in its ground
state has no permanent magnetic moment; placed in a
magnetic field it will exhibit a diamagnetic response. A
measure of this response is the magnetic susceptibility

X = —No d2E/dB?, (18a)

where No is the number of atoms/cm3. Using Egs.
(11a)-(11c) one can express the ground-state susceptibility
as
2
Xo00 = =No 32 22(000)/2a> = ~Nos/hwo, (18b)
0
where up is the Bohr magneton.

The origin of the diamagnetism is a field-induced mag-
netic moment in each oscillator. This implies that there is
an induced current in the oscillator. We can interpret this
electric current as the electric charge multiplying the con-
served probability current J. For the field-free isotropic
oscillator the probability current J = Re[¢r, nno (—iAV)

@nmingl /m vanishes. However, in the presence of a magnetic
field

J = Re[Prmnd)* [~k ~ (e/c)A]Prrnin0))/m
= —e| P rin0)|2A/me.  (192)

If the field is uniform, the current induced in the ground-
state oscillator is

J(r) = | P00|2¢y; X r, (19b)

indicating a block rotation of the electron density (like a
probability “fluid”) counterclockwise about the field di-
rection at the Larmor frequency.

IV. CONCLUSION

The problem of an electron bound by a Coulomb poten-
tial and subjected to an external magnetic field is one of
current research interest but of sufficient mathematical
complexity that only numerical or approximate solutions
can be given. The isotropic harmonic oscillator in a uniform
field is an exactly soluble quantum problem which can serve
as a useful model of an atom in a magnetic field of arbitrary
strength. We have derived the exact energy eigenvalues and
used them to test the standard perturbation theory of the
magnetic interaction at low field strengths where (for ju-
dicious choice of gauge) the field-free, paramagnetic, and
diamagnetic contributions are clearly displayed. The
transition to the quasi-Landau spectrum for high fields was
also shown. A study of the Zeeman effect showed that for
low fields the expected Zeeman triplet for transverse ob-
servation and doublet for longitudinal observation emerge,
but for very high fields the dominant emission line is the o+
component at the cyclotron frequency. Finally we demon-
strated the contraction of the wave functions in the plane
perpendicular to the field and showed that in the limit of
very strong fields the three-dimensional system becomes
effectively a one-dimensional system directed along the field
axis.
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