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A simple model for inelastic scattering may be obtained by suitably generalizing
scattering from a square well. The generalization introduces matrices into the
quantum-mechanical scattering equations. These equations may be solved exactly to
give an explicit expression for the scattering matrix. In this paper we first describe and
solve the model, and then discuss the results it predicts for a simple example. We will
see that even a simple inelastic system can exhibit rich scattering behavior.

L. INTRODUCTION

In a simple collision, two particles approach each other,
interact or react in some way, and then fly apart. The scat-
tering event may be designated elastic, inelastic, or reac-
tive, depending on what changes take place during the col-
lision. Elastic scattering, in which at most the directions of
motion of the two particles change, is the easiest to study,
and most elementary scattering theory is concerned with
elastic collisions. Reactive scattering, in which the identi-
ties of the colliding particles change, is the most complex
and interesting process, but is quite difficult to treat. Be-
tween the elastic and reactive limits lies inelastic scattering,
in which the internal states of one or both particles change.
The particles might be nuclei, atoms, or molecules. Thus
typical inelastic scattering processes involve Coulomb ex-
citation of nuclei, electronic excitation of atoms, and rota-
tional or vibrational excitation of molecules.

In this paper we will develop a model for the inelastic
scattering of two particles. It is not meant to simulate the
features of specific inelastic processes like those mentioned
above, but rather to incorporate the important features
shared by all inelastic problems. One specific model for
inelastic scattering has already been discussed in this Jour-
nal’; it treated the colinear scattering of a particle and a
harmonic oscillator. By foregoing detailed specification of
the system, we obtain a model that is much more general,
yet no more complex.

Basically, the model we will consider is a generalization
of scattering from a finite radial square well® in which the
equations are rewritten in terms of matrices. The necessary
background for this development is an acquaintance with
elementary matrix operations (diagonalization and inver-
sion)® and with the basic concepts of scattering in three
dimensions.* Optionally, with some previous computer ex-
perience it is not hard to write a program to evaluate the
expressions for the scattering behavior that we will derive;
the problem is ideal for computer study. It is hoped that
this treatment can serve as a pedagogically sound way of
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introducing inelastic scattering at the advanced under-
graduate level.

The square well is perhaps the simplest model for elastic
scattering. It is straightforward to formulate and solve ex-
actly the quantum-mechanical scattering equations. The
model displays several important quantum effects, such as
interference and tunneling; it also serves as a good example
for some standard approximation techniques, such as the
perturbation and semiclassical methods. For these reasons
the square well is, along with the harmonic oscillator and
the hydrogen atom, one of the most important examples in
elementary quantum mechanics.’

The inelastic square well also serves as an illuminating
example, but for somewhat different reasons. Its value lies
in the fact that it combines several different familiar tech-
niques to achieve an understanding of a relatively complex
and physically interesting system.® Like the anharmonic
oscillator and the helium atom, the inelastic square well
builds upon a simpler system, and like them it both de-
mands some extra work and offers some new insights.

To construct the model, we start with an ordinary three-
dimensional square well, which is used to approximate the
basic radial potential between two particles. However,
these particles are now understood to have internal states
that are coupled during a collision. To keep the model as
simple as possible, we take the coupling to be proportional
to the radial potential—hence zero outside the well and
constant within. The inelastic square-well model is there-
fore completely specified by the depth and width of the
well, the particle energy levels, and the coupling coeffi-
cients of the internal states.

The coupling coefficients form a matrix, with row and
column numbers specifying the initial and final states. We
can form another matrix, labeled in the same way, whose
entries are the probability amplitudes for transitions be-
tween states as the result of a collision. This is the so-called
scattering matrix, or .S matrix. It can be derived from the
solutions to the Schrodinger equation, and is closely con-
nected to the observed scattering behavior (e.g., cross
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sections).

An explicit expression for the S matrix of the inelastic
square well will be obtained below. It is recommended that
a simple computer program be written to do the algebra for
some sample cases. This program can then be used to sur-
vey the scattering behavior as a function of the system pa-
rameters, such as the total energy and the depth of the
potential well. To complement such numerical studies, it is
instructive to locate the sources of the major features of the
scattering behavior in the explicit expressions. We will car-
ry out such an analysis for a simple example later in this
paper. First, however, we devote Sec. II to the formulation
of the scattering problem for the inelastic square well, and
Sec. III to its solution. '

II. SCHRODINGER EQUATION

In an inelastic collision the internal state of the pair of
particles changes. We start by considering these internal
states in the absence of translational motion and the inter-
action energy. The states are eigenfunctions of an internal
Hamiltonian 4 (r):

h (), (r) = €, ,(r), (1)

where r stands for a complete set of internal coordinates
and n designates the internal state or “channel” of the sys-
tem. (Note that we are considering the pair of particles as
one system.) For purposes of the model, this is as far as we
have to go in describing the internal problem, as will be-
come clear below. We therefore proceed immediately to the
scattering problem.

The complete Schrédinger equation, in the center-of-
mass coordinate frame, reads

HRnNY,Rr)=EY,(Rr), (2)

where
HRrx)=h(r)— (#/2u)V% + V(R). (3)
Here R = (R,0,4 ) is the relative separation vector, E is the
total energy, and u is the reduced mass. The first term in
the Hamiltonian describes the internal motions, the second
gives the relative translational energy, and the third is the

interaction potential that is responsible for the inelastic
scattering. We assume the following form for this potential:

VRr) = Vo (R )V coupie T); 4)
where
Vo (R<R,
IR o

These equations define the model. They describe a spheri-
cally symmetric well (for ¥, < 0), within which the internal
states are coupled by a function that shows no further de-
pendence on the distance between the particles.

Now consider the wave functions ¥, . The index n is used
to indicate that this solution corresponds to scattering from
channel n. Of course, because of the coupling, the total
wave function will in general have contributions from all
channels. It is convenient to separate these contributions
by making an expansion in terms of the internal states
r,.(r):

¥, (Rr) = 3L, (O pn(R). (6)

We may interpret y,,., as the component of the total wave
function in channel m', assuming an incident wave in chan-
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nel n. We immediately make a further expansion, this time
in terms of the Legendre polynomials P,. (cosé ), in order to
separate contributions from different angular momenta:

Yo ® =2 5 Vi RIPcosd). (1)

Such a “partial wave” expansion is also used in the treat-
ment of elastic scattering from spherically symmetric
potentials.*

These two expansions will enable us to perform a separa-
tion of variables that reduces the original many-dimension-
al Schrodinger equation to a set of one-dimensional equa-
tions. To perform this reduction, insert Eqgs. (3)-{7) into Eq.
(2), multiply by I" % (r)P,(cos@ ), and integrate over all co-
ordinates except R. The result, after a little work, is'’

d? 2 _ A0+ ) "

(s + k2~ Dy R)

VOZ Umm' 'pin’n (R ) (R <R0)

0. (R>R,). (8b)
Here k 2, = (2u/#)(E — €,,) is the square of the wave vec-
tor for internal state m, and U,,,,. = (2u/#){m'|V oy [m)
is the matrix element coupling internal states m and m'.
Notethattheterm/{/ + 1)/R *isacentrifugal potential that
arises from the angular part of V4. At this point we can
forego explicit reference to both the internal states I, and
the coupling potential V., retaining only a constant
coupling matrix U. Quantum mechanics assures us that
specification of the matrix elements alone still uniquely
prescribes the problem.
The Schrodinger equation for ¥ (R,r) has been trans-
formed into sets of coupled equations for the ¢/, (R }—one
set for each /. We now proceed to solve these equations.

(8a)

IIL. SCATTERING MATRIX

Perhaps the most straightforward way to solve the elas-
tic square-well problem is the following: First, write the
wave function in each region (R<Ryand R > R,) as a linear
combination of independent solutions with unknown coef-
ficients; then impose conditions (boundary, normalization,
and continuity) in order to fix these coefficients. The same
method can be used here, but it must be combined with a
method for handling the inelastic coupling. '

Coupling is most easily dealt with by expressing the
problem in terms of matrices. We can construct matrices
from objects with two subscripts in the obvious way, by
letting the first subscript designate the row and the second
the column; this gives us Uand ¢/(R ), for example. We can
also construct diagonal matrices from objects with one sub-
script; by placing these along the diagonal and zeros else-
where; in this way we obtain & % and I (r). There will be no
confusion if we omit reference to / and R in our matrix
notation, and write, for example, ¥ in place of ¢/(R ). We
will need to perform one matrix diagonalization and one
matrix inversion in order to solve the inelastic square-well
problem.

Before proceeding we give a precise definition for the S
matrix’: An element S, (E) is the probability amplitude
for scattering between incoming channel » and outgoing
channel m at angular momentum / and energy E.
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Explicitly,
(R )R—:wéanfn(R )+ 84.GL(R), (9)

where F!, and G/, are incoming and outgoi '
Eq. (8b), g going solutions to

FLIR) — ke "+,

R—ow

(10)
GL(R) — k le* VR

R—o
Here the factor k ! normalizes the flux, or rate of colli-
sions, and the phase §, = — (/ + 1}m/2 arises from the cen-
trifugal potential. (We will present more explicit forms for
F! and G, later.) With this definition of the § matrix, the
partial cross sections ¢, and total measurable cross sec-

tions o,,, are given by’

Oum = 3Ot =(m/k2) S @+ 1)|Sh, — 8, |2 (1)
=0 =0

We now return to the problem of solving Eqgs. (8). Denot-
ing differentiation with respect to R by a prime, we can
rewrite them in matrix form

o+ Wi — ﬂlRLzle =0 (R<Ry), (12)

¢”+k2¢__l__(_1kiz_l.)_¢=0

where W = k?— V,U. The off-diagonal elements of W
have the effect of coupling the entries of ¢ in the interior
region. However, we can uncouple them by an appropriate
change of basis.? Indeed, we can always find an orthogonal
matrix P such that d> =P "WP=P " 'WP isa diagonal
matrix. If we now let :

¢=P" (14)
then we can rewrite Eq. (12) in its diagonalized or uncou-
pled form

(R>Ro)s (13)

Hl+1
:p"+d2¢»——%—’¢=o (R<Ry. (19

We must now solve Egs. (13)and (15). These are second-
order differential equations, so their solutions can be writ-
ten as linear combinations of two independent functions.
For the last equation we take these to be

JL(R)=Vd.)Rjild.R), (16)
N.L(R)=Vd,)Rn(d,R)

where j,and n, are spherical Bessel functions, the same
ones that arise in the elastic scattering problem“; they differ
from the usual Bessel functions. The only specific informa-
tion we will need about them is that the n, diverge at the
origin, while the j, do not. Away from the origin
J' and N, behave like cosines and sines. In the exterior
region it is more convenient to use functions that behave
like plane waves. These may be written in terms of the com-
plex functions & | =j, + in; and h?=j, —in;:
F'(R)=V(k,)Rh{k,R),
(17)
G.(R)=V(k,Rh(k,R).
We can now solve Egs. (13) and (15) by analogy with an
ordinary square-well problem. We start by writing the

wave function in each region as a lincar combination of
independent solutions with unknown coefficients:
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¢ R)=A4,J (R)+ B, N,R) (R<R), 18
! (R)=CL, F.(R)+D},,G(R) (R>Ro)

Next we impose conditions to fix the coefficients. First, the
boundary condition that the wave functions not diverge at
the origin requires that B, = 0. Second, from Eq. (9) we
obtain the normalization condition C, =&,, and the
identification D', = S',,. So far, then, we have reduced
Egs. (18) to the following:
p=J4 T (R<Ry),
¢y=F+GS" (R>Ry)
Finally, to relate the equations for ¢ and ¢ and finish our
derivation, we must invoke the continuity condition that
the wave functions and their first derivatives be continuous
at the boundary between the two regions. Denoting evalua-
tion at R = R, by a subscript 0, this double condition reads

Ppo = .

P o =
Substituting in the expressions from Eqgs. (19) we find
PIAT=F,+ GST,

(19)

(20)

(21)
PIiAT=F4+GiST.
This is a set of two matrix equations in two matrix un-
knowns, 4 and S. They canbe solved like ordinary algebra-
ic equations, provided we remember that matrices donotin
general commute. Solving for S, we have the final result

S = —'(QFo—Fé)(QGo—Gé)_l, (22)
where Q= PJ'J ~'PT.

IV. APPLICATION

In this section we will look at the scattering behavior
exhibited by a weakly coupled two-state system specified
by the conditions

R,=1,  —500<¥,<0,
€, =0, B (1.0 o.1> . (23)
€=200, ~ \01 10

(Throughout this section, lengths are given in units of R,
and energies in units of #/2uR Z.) The total energy of the
system is taken to be 400. Because the off-diagonal (inelas-
tic) elements of the coupling matrix U are small compared
to the diagonal (elastic) ones, elastic scattering will domi-
nate, and inelasticity will act as a perturbation. Keeping
this in mind will simplify the interpretation of the observed
scattering behavior. This set of parameters was chosen for
purposes of illustration; other choices could be used to sim-
ulate real inelastic collisions.

To calculate the scattering behavior we must evaluate
the expression in Eq. (22). In the example all matrices are
2% 2, so that the diagonalization and inversion that are
required could be performed by hand. However, a comput-
er program is almost indispensible for repeated evalua-
tions, and for problems with more than two channels. Giv-
en subroutines to diagonalize and invert matrices and to
evaluate Bessel functions (all of which are usually included
in libraries of numerical algorithms), it is not difficult to
write such a program. Below we will present some typical
results from such a program. We will look at both elastic
and inelastic scattering, in each case calculating the partial

Loeser ef al. 1048



Vett (R)

-2001

0.0

Fig. 1. Effective potentials for 0</<25, ¥, = — 300 along with surfaces at
k? =400 and k3 =200 representing the energy available in each
channel.

cross sections ¢, , as functions of the angular momentum /
and well depth ¥, It is convenient to think of these param-

eters as determining an effective potential that includes a
centrifugal term’:

Veﬂ‘ (R ) = Vwell (R ) + Vcent (R )

2 Jl+1
Vo+2ﬁ_p% (R<Ry)
- 24
ALY e
2u R? o

Some effective potentials are plotted in Fig. 1; also
shown are sections of planes representing the energies & 2,
available in the two channels. Note that as the angular mo-
mentum is increased, the centrifugal barrier surrounding
the well eventually exceeds the available energy, rendering
scattering classically forbidden; another way of saying this
is that the impact parameter b = [ /k,, eventually exceeds
the well radius, so that the particles simply miss each other.
This first happens for / = 20 in channel 1 and for / = 14 in
channel 2. Wave functions in both channels for the inter-

600 T T T T

500

400

300)

Vets(R)

200

100F

o i 4 'l
[o] 0.5 Ko} L5 2.0 2.5

Fig. 2. Effective potential for / = 17, ¥, = — 300 along with real-valued
wave functions in each channel.
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Fig. 3. Elastic partial cross sections o/, as a function of / and V,; maxi-
mum value plotted is 1.386R 3.

mediate case / = 17 are plotted in Fig. 2. The nonzero am-
plitude of the charinel-2 wave function in the classically
forbidden well region is evidence of quantum-mechanical
tunneling.

The elastic scattering behavior in channel 1 is plotted in
Fig. 3. We may ignore the effects of inelasticity in discuss-
ing the general features of this plot. The overall waviness—
that is, the variation in the magnitudes of the partial cross
sections as the angular momentum and well depth are var-
ied—may be attributed to an oscillation between construc-
tive and destructive interference of the incident and scat-
tered waves.®® Modulating this oscillatory behavior is an
amplitude factor, which appears to increase steadily with
the angular momentum until it falls rather abruptly to
zero. The steady increase is a geometrical effect, arising
because the effective target area corresponding to an angu-
lar momentum / increases as 2/ + 1.'° The abrupt drop oc-
curs around /= 20 at the transition from classically al-
lowed to classically forbidden scattering.

The two factors just discussed fail to account for the
large spikes in the background of Fig. 3. These are located
in the domain of classically forbidden scattering, which
means that scattering is achieved only by tunneling of the

I
i

M |‘ “\ 1“\}

. \\\‘\‘}\\\\\w\‘\\ﬁ\&\é\‘\ A
LAY i\\\’ \ (“‘ \\\\\',(5‘\\\“
"‘\\\;&‘:\‘;\E\)&\\ \‘\‘:\‘\\\\\\\:

\‘{‘\\\

)
A\

Fig. 4. Inelastic partial cross sections o4, as a function of / and ¥;; maxi-
mum value (at / = 18, ¥, = 300) is 0.1608R 2; maximum value plotted is
0.0237R}.

Loeseretal. 1049



600

500

400

300

Veff (R)

200F

100

0 A L 1 1
o 0.5 1.0 1.5 2.0 25

Fig. 5. Effective potential for [ = 18, ¥, = — 300 along with wave func-
tions in each channel plotted at their respective energies. The wave func-
tion in channel 2 clearly demonstrates resonant behavior.

incident wave through the centrifugal barrier to the region
of the well. Nevertheless, for some combinations of / and
V, there is a tendency for the incident wave to excite a
standing wave in the well, leading to a large amplitude in
this forbidden region. This effect, which is sometimes de-
scribed as resonance with a “quasibound level” of the effec-
tive potential, accounts for the spikes.'!

The inelastic scattering behavior is plotted in Fig. 4.
Again we can interpret the behavior by considering inelas-
ticity to be a small perturbation; now, however, it is precise-
ly the value of this perturbation that we are interested in.
The regular array of maxima on the right results from si-
multaneous oscillatory behavior in two different directions
of the /-V, plane. This can be traced to the perturbation
theory result that the cross sections depend on the overlap
of the unperturbed undulating wave functions in the two
channels. The envelope of the peaks is now governed by
two amplitude factors: a factor 2/ + 1, as in the elastic cross
sections, and a factor V2 from perturbation theory.

Again in Fig. 4 there is resonant behavior in the classical-
ly forbidden domain, in this case in the form of one very
large partial cross section at /=18, ¥, = — 300. (The
spike has been truncated at about 15% of its full height in
the figure.) Like the forbidden spikes in the elastic cross
section plot, it is a consequence of a resonance with a quasi-
bound level of the effective potential. This resonant situa-
tion is illustrated in Fig. 5, which should be compared with
Fig. 2. In both cases the high centrifugal barrier renders the
well region classically inaccessible to channel 2, but quan-
tum-mechanical tunneling temporarily overrides this clas-
sical restriction in the case of resonance.

This concludes our brief survey of the two-state exam-
ple. Among the avenues available for further investigation,
we recommend the following: First, there are many in-
sights to be gained by varying other important system pa-
rameters, such as the total collision energy and the inelastic

coupling strength. At a more formal level, the expression
for the S matrix, Eq. (22), can be manipulated to reveal its
properties (e.g., unitarity) and its limiting cases (e.g., small
inelastic coupling).® The model can also be used to study
approximation techniques; this can be done either empiri-
cally, by comparing approximate with exact results, or ana-
lytically, be observing the modifications to the exact ex-
pressions introduced by the approximations.

V. CONCLUSION

In this paper we have studied a model for inelastic scat-
tering that can be solved by combining a few techniques
familiar from elementary quantum mechanics. The sim-
plicity of the problem and its solution, however, do not
preclude interesting scattering behavior. Indeed, many
phenomena observed in real inelastic collisions are already
exhibited by this model. The inelastic square well is useful
at both the educational and research levels, and can be used
as a means to bridge the two.
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Equipped with his five senses, man explores the universe
around him and calls the adventure Science.
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