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Quantum pendulum

R. Aldrovandi and P. Leal Ferreira

Instituto de Fisica Tebrica, Sdo Paulo, Brazil
(Received 16 July 1979; accepted 27 November 1979)

The problem of the mathematical pendulum is discussed in its classical,
semiclassical, and quantum aspects. The energy spectrum and the eigenfunctions
are presented under the usual requirement of single valuedness of the solutions.

I. INTRODUCTION

The mathematical pendulum, a massive particle con-
strained to move on a vertical circle under the action of
gravity, is one of the classical problems of mechanics. Al-
though with only one degree of freedom, its well-known
solution is not trivial, as the equation of motion, being
nonlinear, requires for its exact solution the machinery of
elliptic functions. Physically, the system is rather peculiar:
it exhibits three different regimes of motion, according to
its total energy: rotational motion, vibration motion, and
an asymptotic approach to a single angular deflection of 2.
The first two cases are periodic. The third appears as a
limiting case and is nonperiodic. This distinctive behavior
comes from the different topologies assumed by the avail-
able configuration space in each case.

The general quantum problem is rather involved, as it is
a case of quantization in a multiply connected configuration
space,! for which the only known approach is via path in-
tegrals. Strictly speaking, quantization in the circle would
require multiply valued wave functions.? In the more real-
istic case, however, when the circle is imbedded in the Eu-
clidean space R3, the wave function on the circle is only a
restriction to this multiply connected manifold of a wave
function in R3, and so will be single valued. However sur-
prising it may be, we have not been able to find any self-
contained treatment in the literature even for the special
case of periodic (that is, single-valued) solutions. We shall
here suppose it to have been missed, and try to fill the gap.
As will be seen, the Schridinger equation admits of exact
solutions in terms of a certain class of Mathieu functions.
The energy spectrum for a given pendulum can be calcu-
lated in terms of the “characteristic values,” well known in
the theory of the Mathieu equation.

Our presentation will be fairly elementary. In Sec. 11, a
brief account of the classical solutions34 is given in terms
of Jacobian elliptic functions and the phase-space orbits are
discussed. Although very well known, we emphasize certain
points which are important for the semiclassical quanti-
zation performed in Sec, 111. The Schridinger equation, its
reduction to a Mathieu equation, a method to compute the
eigenvalues and eigensolutions, as well as a discussion of
some limiting cases, are the subject of Sec. V. Section V
is devoted to some final remarks.

IL. CLASSICAL SOLUTIONS AND THE
PHASE-SPACE ORBITS

The Hamiltonian for the plane pendulum of length /
and mass m is

H = (1/2ml?)P} — mgl cosf, ¢}

where 8 is the angle of deflection.
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The Hamilton equations give immediately

Py = mi20, Py = —mglsind, (2)
from which it follows that
8 + Q2sinf = 0 (3)
if we define
02 =g/l (4)

Equation (3) is an autonomous ordinary nonlinear dif-
ferential equation. In order to solve it, we may use the fact
that the total energy E is an integral of motion. From Egs.
(1) and (2),

E = (1/2)ml?6? — mgl cosf. (5)

It is convenient to introduce the quantity wq, defined as
the value of the angular velocity at the point 6 = 0. As

E = (1/2)ml?w} — mgl,
Eq. (5) yields
62 = w} — 4Q2sin2(6/2). (6)

This first-order differential equation can be solved in
terms of Jacobian elliptic functions.> Three cases, corre-
sponding to three different regimes of motion, are to be
distinguished, according to the relative values of wj and 4
Q2

(i) w§ > 492, or E > mgl—rotational motion. The so-
lutions are given by

sin(0/2) = sn(Q/k)(t ~ 1), N
where the modulus of the Jacobian elliptic function is
2 mgl Y112
k=1—2— A 8
(E + mgl) )

They correspond to motions with complete revolutions,
with period given in terms of a complete Legendre elliptic
integral of the first kind:

= -4_ K (E) 9)

wo wo
An interesting limit is the pure rotor: g — 0, &k — 0. As
#(0) = /2, the period becomes energy independent, T =
21r/w0.
(ii) w3 < 492, or E < mgl—oscillatory motion.
The solutions are given by

sin(0/2) = ksnQ (1 — 1o), (10)
with the modulus now being
~ (E+mglh\l2_ | |«
= |==E) T = in| = 11
o
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where a is the amplitude of the oscillation. The period is
4 wo

= — K |—]|. 12

T=q% (29 (12)

The case of small oscillations, & = 2k <« 1, leads again
to isochronism.

(iii) w? = 4Q2, or E = mgl—actually, this case is to be
considered as a limiting case of (i) for k = 1, as it will be
clear later on; the solution is

6 = 4tan~! [tanh(2/2)(z — t0)], (13)

or

sin (6/2) = tanh[Q (z — 10)]. 13)

This corresponds to a deflection from § = —w to 6 = +=
in an infinite time. If we choose to think of this case as pe-
riodic, Eq. (9) gives T = «. There is no really periodic so-
lution in this case. Notice that Eq. (13) is always a solution
of Eq. (3). In cases (i) and (ii), it is incompatible with the
conditions on the energy. When k and & tend to one, both
Egs. (7) and (10) tend to Eq. (13’). This is not quite a sur-
prise: Egs. (7) and (10) can be shown to be identical by
using the properties of the Jacobian functions.? The cases
have been displayed separately in order to stress their dif-
ferent regimes and corresponding configuration spaces.

The orbits in phase space are easily obtained from Egs.
(2) and (5):

Py = +[2mI2(E + mgl cosf)]'/2. (14)

Although this expression is the same, its interpretation -

is distinct in the three cases above:
i) Py = £ml%wo[1 — k2sin2(8/2)]'/2, (15)

where the two signs correspond to different motions
(counterclockwise, clockwise); Py is never zero, and the
orbits in phase space are open of period 27;

. - 1, 0\/2
(ii) Py = £2mi2kQ[1 — =sin2 =] ", (16)
k? 2
where both signs are to be used in order to give the complete
closed orbit in phase space, corresponding to one given
motion;

(iii) Py = tmlwycos(l/2).

Here, one motion is given by each sign; despite the apparent
closed orbits in phase space, positive and negative Py cor-
respond to distinct motions, limits of the two motions in case
3i).

These differences will be important for the Bohr-Som-
merfeld quantization to which we shall proceed in Sec. I11.
The orbits in phase space are usually depicted in text-
books.*¢ They are, however, usually put all together and
the above distinctions should be kept in mind.

Itl. ACTION VARIABLES: SEMICLASSICAL
QUANTIZATION

The Bohr-Sommerfeld quantization rule is
J= fp,,da = 27 Nh, (17)

where NV is an integer and the integration is to be done over
a whole period of the motion. It is not difficult to calculate
(17) for the three cases above.
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Case E > mgl. One has
J = 1[2m(E + mgl)]'/2
X f "1 - k2sin%(8/2)]'/2d8.  (18)

By the simple change of variables § = 2¢, this can be readily
written in terms of the complete Legendre elliptic integral
of the second kind:

J = al[2m(E + mgD)]\2 (k). (19)

Here a word of caution is worth giving: as stressed in Sec.
11, a given motion is related to only one of the signs in Eq.
(14). The quantized area in phase space is entirely con-
tained either in the upper or in the lower half (6, Pg)
plane.

In order to make contact with the quantum-mechanical
treatment of Sec. 1V, it is convenient to introduce a di-
mensionless (Mathieu) parameter g defined by

= —2mgl/(h?/2ml?) = —4(mgl/hQ)2.  (20)
Then, Eqgs. (8), (17), and (19) can be put together in

(w/2)Nk = |q| /26 (k); (21a)

E =mgl(2/k2—-1). (21b)

For fixed values of |g| and N, Eq. (21a) can be numeri-
cally solved for k. The quantized energies are then readily
obtained from Eq. (21b).

A limiting case of interest is the plane rotor, obtained for
g — 0 [thatis, k = 0,9 —0but k/|g|'/2— h/(2mI%)'/2].
As (k) — 7 /2 when k — 0, the result is

E = (1/2Ip)N2h2, (22)

where we have denoted the moment of inertia mi? by I,.
This is, of course, the usual exact result for the rotor.

Case E < mgl. In this case the quantized area in the
phase space is the whole one contained inside the curves of
Eq. (16). Another difference is that the period is no more
2x. So,

+a
J=2 f dx[21(E + mgl cosa)]'/2,

where « is the amplitude given by Eq. (11). Then,
J = 4[21o(E + mgl)]'/2

2sin~1%
X j; [1 — k2sin2(8/2)]"/2d6.

As in the previous case, this can be written in terms of a
Legendre elliptic integral of the second kind, but now in-
complete:

J = 1616Q(1/k)E(k, ¢ = sin~'k). (23)

There is, however, an important difference: now, the mod-
ulus

k= (k)-1>1.

Making use of the relation” between incomplete elliptic
functions of reciprocal moduli,

(k™" ) = (1/k)[6 (k, &) — k"2F (k, )], (24)
where k'2 = 1 — k2 is the complementary modulus and

sing = ksing; (25)
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one finds ¢ = w/2 and Eq. (23) becomes simply
J = 1616Q[& (k) — k2% (k)]. (26)

Inside the brackets, only complete elliptic integrals appear.
Again in terms of the parameter g of Eq. (20),

Nw/dlq| /2= 6(k) — k2% (k), (27a)
E = mgl(2k?2 - 1). (27b)

Really, the integer NV in the above equation should be
replaced by N + 5, in the WKB approximation. In fact, for
E < mgl there are two turning points at = +« and in such
a case, as is well known, N = N + Y, for N = 0, 1,
2,....

An interesting limit of the present case may be obtained
from Eq. (27a) for small oscillations, that is, for small
values of the amplitude o and [from Eq. (11)] of the mod-
ulus k. By developing the right-hand side of Eq. (27a) up
to quadratic terms in k, one has

&(k) — k2% (k) ~ (n/4)k2 (28)
Equations (20) and (27) give then
E + mgl = Nh(},

as it should be expected.

Case E = mgl. This would be, in principle, a limit of the
first case when kK — 1. However, as E = mgl, the very
meaning of quantization is lost. In a neighborhood of k =
1, as 6(k) — 1 more slowly than &, one gets

nZh?w?
E~—mgl+-——,
MET 200 4
a rotorlike spectrum with a “vacuum” deepening and a
“renormalized”” moment of inertia.

(29)

(30)

IV. SCHRODINGER EQUATION FOR THE
PENDULUM

The time-independent Schrodinger equation corre-
sponding to the Hamiltonian (1) is

h? d?
- W@E‘l’(a) — mgl cosby(0) = E¥(0). (31)

The boundary condition to be imposed on the wave function
is that it be single valued in the angular variable 6, that is,
that ¥(8) be periodic in 8 of period 2m:

Y(0 + 2m) = Y(0). (32)

Equation (31) can be rewritten as a Mathieu equation,
whose standard form is

%\P(U) +(p— 2qcos20) Y(v) =0, (33)

simply by defining
6 =2v, (34)
4E
P=—— 35
h%/2ml?’ (35)
and recalling Eq. (20),
2mgl
= - 20
1= w2 ami (20)

In view of Eq. (34), condition (32) reads
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Y20 + M = Y(2v), (36)

that is, as a function of v, the wave function, which we will
denote by Y(v), has to be periodic of period 7. Such solu-
tions are Mathieu functions of even order: ce;,(v) and
seant2(v), forn =0,1,2,.... The Mathieu equation has
also odd-order solutions cesn+ (), sezn+1(v), which are
periodic of period 2, as well as nonperiodic solutions. These
are all excluded by our periodicity condition above.

We notice further that Eq. (31) really corresponds to a
Mathieu equation with a negative ¢. In order to meet the
usual definitions for the Mathieu functions, we must per-
form a change of variable, replacing v by (w/2 — v) in the
equation. One can now use the following properties’ of the
Mathieu functions:

ceo(v, —q) = ceg (/2 — v, q);
cern(v, —q) = (=)" ce2n(w/2 — v, q); (37)
ser,(v, —q) = (=)"*1 sezn (/2 — v, q).

The factors (—)” and (—)”*! have been inserted in order
to ensure the validity of the formulas for g = 0.

The Mathieu functions are conventionally normalized
to 7 in the interval (0, 27) and so we finally obtain the
normalized solutions of the Schrédinger equation (31), with
boundary condition (32), in the form

Y§(0, —q) = 2m) " 2ceo((m — 0)/2, q);  (38a)
Y0, —q) = mV2(=)cern((m — 0)/2, q); (38b)
Y0, —q) = 7=1/2(=)n+ sep, ((m ~ 6)/2,9),  (38¢)

withn=1,2,3,....

The solutions ¥4 and 4% are even and odd real functions
of 8, respectively. They are linearly independent and obey
the orthogonality conditions

[ Tvmowso do=o
{7 vmouRe a0
= [T VROURO d0= b (39)

Their respective eigenvalues P,, are denoted by a;,(—q)
and b,,(—q). For them, the following relations hold:

a,(—q) = az(q),

by (—q) = baa(q), (40)
a24(0) = b2,(0) = 4n2.

These eigenvalues (“characteristic values” in the
mathematical literature) and the related eigenfunctions can
be computed?® by assuming trigonometrical expansions for
the eigenfunctions. The coefficients of these trigonometric
series obey certain three-term recursion relations and can
be numerically calculated by a well-established procedure.
The calculations are rather tedious. We shall here content
ourselves with a sketchy how-to-do-it recipe, whose justi-
fication requires a large utilization of the properties of
Mathieu functions that are found in the standard texts on
the subject.®10

The two kinds of Mathieu functions needed here are
represented by the trigonometric series:
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cesn(z, q) = i A" cos2jz;
=0
sexn(z, q) = Z B, sin{(2j + 2)z]. (41)

The wave functions (38) can then be put into the form

v (6, —q) = 2m)12 _S'ioAs‘}) cos(j0);
2

Y (0, —q) = T2 5 APV cos(jl);  (42)
j=0

YO (B, —g) = =12 3 BE,sin[(j + 1)6].
j=0

The orthonormality conditions (39) give relations amorig
the coefficients, which we shall write down in a form con-
venient for future discussion:

T R

1 B4\? . [Be)?
=142+ 2 +.... 44
= (o (B (@)

The valuie of the parameter g is a characteristic of the
pendulum under consideration and is supposed to be given
from the beginning. Now to our recipe:

(a) Eigenvalues. Introduce

= (P -n?)/q, (45)
and define a function g(P) through a continued fraction,

gP)=Vi— e (46)

The zeros of this function are the eigenvalues corresponding
to the odd functions, that is,

g(b2n) = 0. (47)

The eigenvalues corresponding to the even eigenfunctions
are the solutions of the equation

g(P) — 2q/P =0, (48)
that is,
g(aZrI) = 2q/a2lr (49)

Here, approximate results such as those given by the
semiclassical approach are of great help, as the numerical
methods to find the zeros in Eqs. (47) and (48) frequently
require an initial guess.

(b) Eigenfunctions. Once an eigenvalue is given, the
remaining task is the computation of the coefficients in Eqs.
(42). This is done by using the following recursion rela-
tions:

(1) even case:

A, _P

Ay g
Ay P—44,
—_— 2 50
Ao q Ao (50)

A2g+2 P- 4j2A;21._—1—A2'—2 for j=2.
Ao qg Ao Ao
Once the ratios 4,,/4 are obtained, 4% can be calculated
from Eq. (43). Conventionally Ag is positive in the series
(41) and so in principle all the coefficients are known.
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(ii) odd case:

Bs_P—4
B q
Bojrz _ P =428y _ By (51)
B, qg B B

B, is conventionally positive and cdn be obtained from Eq.
(44).

So, in principle, the above rules allow one to obtain all the
eigenvalues and respectlve eigenfunctions for the pendulum,
with as good a precision as wanted.

The convergence of the series (41) is extremely fast.® This
fact, first realized by Ince, made possible the first tabulation
of the Mathieu functions, in a much better way than
Mathieu’s original procedure based on a power series ex-
pansion in q.

An extra case, for which this procedure can only be used
through successive approximations, appears when g = 0,
i.e.,, g = 0. Then Eq. (45) loses all meaning. The simplest
issue is to go directly to Eq. (31) or (33), which become
those describing a free plane rotor. The normalized wave
functions (42) reduce simply to

vEO) = Q)12
Y8 (0) = 7= "/2cosnd, (52)
Y(0) = 7~ /2sinnb;
and the related eigenvalues [from Eq. (35) and the last
relation (40)] are
Ey=0,
1 A2 h?. "
2T 4 oml2 T a2

which are just Eq. (22). Except for the fundamental state,
one has the well-known double degeneracy of the rotor,
which is, of course, removed when g < 0.

Another interesting limit of Eq. (31) is obtained for ||
< 1. In this case, one easily obtains, in terms of the variable

. (53)
2

x = Isinf = 10, the equation
h? d? mQ?
LA 21 =
. dx2¢+ —(E + mgl) + 5% v=0, (54)

the Schrédinger equation for a linear harmonic oscillator
with an angular frequency @ = (g/l)!'/2. The energy ei-
genvalues are

E,=—mgl+ (N+ 1/2)hQ, (55)
or, in terms of the Mathieu parameters p and g,
PN__2|q|+4(N+ 1/2)|q| ' (g <0). (56)

This formula coincides with the approximate asymptotic
formiulas for the eigenvalues of the Mathieu eguation® ob-
tained by taking ¢ — —= and keeping qu? fixed, that is,
small values of v. One can see that in this case, the eigen-
values Py for even N correspond to d2,(|g|) and those for
odd N to baa+2(|q]):

ax~ —2|q| +4(2n +1/2) |q|'/2,

b2~ =2|q| + 4(2n + 3/2)|q|'/2. D

The accuracy of these approximations, for fixed N, in-
creases for increasing |¢|. As an example, the exact nu-
merical values for Po(—9) and Pg (—1600) are, respectively,
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(—12.26) and (—3120.25), while the above formulas give
(—12) and (—3120.00). On the other side, for fixed g the
accuracy decreases with increasing V: for example, for P,
(—1600) = —2803.28 is given a value (—2800.00). One sees
that the semiclassical results are very good even for the
lower states. By using tables for the Legendre elliptic
functions, straightforward calculations show that Egs. (27)
are an still improved approximation as compared to the
‘above ones.

V. FINAL COMMENTS

We have shown how to obtain the energy levels and re-
spective wave functions for the mathematical pendulum.
As it should be expected, it somehow interpolates between
the rotor and the harmonic oscillator, to which it tends in
extreme opposite limits. The energy spectrum retains an

interesting feature of the classical case, that the lower states

are vibrational-like and the higher ones are rotational-like.
The ground state is of vibrational origin for any value of the
parameter g. The excited states form pairs of opposite parity
states whose separations exhibit a very peculiar behavior
as a function of ¢. This behavior is best visualized in the
graphs of the “characteristic values” versus g, availabie in
the quoted textbooks on the Mathieu equation. Of course,
another point worth stressing is the fact that no simple
closed formula exists for the spectrum. Moreover, the
Hilbert space is fairly restricted and no dégeneracy allowed.
This seems rather surprising for such a smooth nonsingular
potential as the one considered here. Although the deep
reasons for all these intricacies are difficult to know exactly,
the good results given by the semiclassical spectrum suggest
that the quantum system is never too far from the classical
‘one, at least not far enough not to inherit the effects of its
nonlinearity.

There is a point we would like to stress here: we have
simply solved the probiem of a mathematical pendulum in
the Euclidean space R3. In this case, the problem is quite
different from the one-dimensional siriusoidal model used
in solid-state physics, which has an Eq. as (31) with 8 =
27x/L. The difference lies in the fact that the physical
variable then is x, extending from — to +, and not an
angle. The phase space is the whole plane whereas for the
pendulum it is really an infinite cylinder of circumference
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27. Were we to stick to the motion of a particle under the
action of gravity and constrained to move on a circle, and
both problems would probably coincide. This is suggested
by the case of the pure rotor? and by a general result ob-
tained from path-integration methods,! following which the
quantization in a multiply connected configuration space
has to be done as if the system were really envolving in its
universal covering space, which for the circle is the straight
line.

Note added in proof. After this paper has been submit-
ted, A. O. Barut kindly informed us about E. U. Condon’s
paper [Phys. Rev. 31, 891 (1928)], as well as that by T.
Pradham and A. V., Khare [Am. J. Phys. 41, 59 (1973)],
ori the quantum pendulum. In spite of the overlapping with
the present paper, we believe that the differences, both in
emphasis and character, are still relevant.
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