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Interaction of a charge and an electric dipole in one dimension

I. Richard Lapidus

Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030

(Received 5 April 1979; accepted 19 July 1979)

The quantum-mechanical interaction of an electric charge and an electric dipole
in one dimension is investigated using the delta-function potential to represent

the interaction between charges. It is found that there is a single bound state.
The problem of scattering of a charge from an electric dipole is solved exactly
and in Born approximation. Because the potential is not symmetric, a phase shift

analysis does not yield the correct cross section.

I. INTRODUCTION

The one-dimensional delta-function potential has
proved to be a useful model for developing insights into
more complex three-dimensional problems. In recent years
a number of authors have published papers in this Journal
in which the model is applied to a number of problems.

Lapidus has discussed models for a diatomic ion! and
molecular orbitals.2 Two-electron systems have been studied
by Lapidus,>* Srivastava and Bhaduri® and Urumov.®
Similar results have been obtained by Nielson.” The Har-
tree approximation has been discussed by Nogami, Val-
lieres, and van Dijk® and by Foldy.!%!! Scattering from
one-dimensional delta-function potentials has been dis-
cussed by Lapidus.!213

More recently, Turner!* has examined the quantum-
mechanical interaction of an electron and an electric dipole.
The electron-dipole problem is also soluble in one dimension
using delta-function potentials for the interaction.

In this paper the interaction of a charge interacting with
an electric dipole in one dimension is studied. It is found that
a single bound state exists. The scattering problem is solved
exactly and by using the Born approximation. Finally, a
partial wave analysis following the formalism of Eberly!>
is carried out. Formanek!6 has shown that the phase shift
analysis should yield the cross section only if the potential
is symmetric. In this case the potential is antisymmetric and
one does not obtain the correct cross section.

II. BOUND STATES

Consider the motion of a particle of mass m in a one-
dimensional potential given by

V(x) = — Ze26(x + a) + Ze26(x — a). n
The time-independent Schrodinger equation is
(=h2/2m)" (x) + V(x)¥(x) = EY(x), (2)

which has bound state solutions

Y1 = Aexp(kx), for x < —aq, (3a)
V> = Bexp(kx) + Cexp(—«x), for |x| <a, (3b)
VY3 = Dexp(—«x), for x 2 q, (3¢)

where E = — h2k2/2m.
The solution ¥/(x) is continuous at x = +a, while ¢/(x)
has a discontinuity given by
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Y'(xa+e) —Y/(£a — ¢) = £(2Z/ag)¥(£a), (4)

where ag = h%/me?,
Solutions of Egs. (3) can be found only for energy ei-
genvalues which satisfy the condition

(kaog/Z)? = 1 — exp(—4ka). (5)
For large values of a, Eq. (5) yields
E=—FE,, (6)

where Eq = Z2e2/2a,, which is the bound state energy of
one attractive delta-function potential well.
For small values of a, Eq. (5) yields

E = —Eod\2/(1 + 2222, (7)

where A = p/eag and p = (Ze) (2a) is the dipole moment
of the system. There is only one bound state. |E| has a
maximum value of Eq/2 when p = ea,/+/2 .

III. SCATTERING

In this section the scattering of a charge by an electric
dipole is discussed. Exact expressions for the reflection and
transmission coefficients are obtained. Scattering is also
discussed using the Born approximation. Finally, the ap-
plicability of the method of partial waves is considered.

A. Reflection and transmission

The solutions of Eq. (2) for an incident wave of unit
amplitude may be written as

¥1(x) = exp(ikx) + rexp(—ikx), forx < —a, (8a)
Vi (x) = bexp(ikx) + cexp(—ikx), for |x| <a, (8b)
Yirr(x) = texplikx), forx = a, (8¢)

where r, b, ¢, t are constants and E = A2k2/2m.
Making use of the continuity condition and Eq. (4), one
obtains

exp(—ika) + rexp(ika)
= bexp(—ika) + cexp(ika), (9)
ik[bexp(ika) — cexp(ika)] — ik[exp(—ika)
— rexp(ika)] = —(2Z/ap)/[exp(—ika)
+ rexp(ika)], (10)
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texp(ika) = bexp(ika) + cexp(—ika), (11)
ikt exp(ika) — ik [bexp(ika) — cexp(—ika)]
= (2Z/ag)texp (ika). (12)

Equations (9)-(12) may be solved for r and ¢. One ob-
tains
r=Ay(1 =)y —iB)/[(A2 + B2)y2 = A7),
£= B2y ((V + 892 - N,
where 8 = 2ka, v = exp(—if), and X\ = 2Za/ay.
For small values of a, one obtains the reflection and
transmission coefficients
AN2(1 + 4Eo/E — \2/3)
1 + 421 + 4E/E — N2/3)”
1
1+ 4N2(1 + 4E/E — N%/3)
Of course, R+ T = 1.

(13)
(14)

R=|r|2= (15)

T=1|2=

(16)

B. Born scattering

Born scattering by a one-dimensional delta-function
potential has been discussed by Lapidus.!? We review the
method here.

The solutions of Eq. (2) satisfy an integral equation

V() = expikn) = Glux UG W)
a7

where U(x) = 2mV(x)/h2and k2 = 2mE/h2. The Green’s
function for the “outgoing” wave solution is

= explik’(x — x')]
GoxxT) = o0 fm (k2 — kD)dk’
2kexp(zk|x—x D). (18)

The Born series is obtained by expanding y¥(x) in a power
series with an expansion parameter of order U/kZ2, i.e.,

Y(x) = P (x). (19)
Then from Eq. (17),
\,b("“)(x) = — j‘_zG(x,x/)U(x’)\P(")(x')dx/' (20)

For the potential energy given in Eq. (1),

YtD(x) = (2Z/ag)G(x, —a)¥'"(~a)
= (2Z/ay)G (x,a)y ™)(a), (21)
where
G(x, a) = (i/2k) exp(ik|x F a|). (22)
Thus, to lowest order the scattered wave is
Y(x) = (iZ/a) lexplik(|x + a| — a)]
—explik(|x — a| + a)]}, (23)

where a = ka,,.

For x > a, ¥"(x) = 0. Hence in lowest order, the scat-
tering amplitude in the forward direction vanishes, i.c., f{)
= 0.
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For x < —a,
Vv O(x) = (2Z/a) sin(2ka) exp(—ikx). (24)

Hence, in lowest order, the scattering amplitude in the
backward direction is

/Y = (2Z/a) sin(2ka). (25)

The total scattering cross section in first Born approxi-
mation is then

ol = LAV + O] = (422 02) sin(2ka),

For small values of a,

(26)

o) = 4N2.

To second order the scattered wave is

(27)

Y (x) = 2(Z/a)? sin(2ka) explik(|x + a| + a)].
(28)
For x > q,
Y(x) = 2(Z/a)? sin(2ka) exp[ik(x + 2a)], (29)
which yields a forward scattering amplitude
f? = 2(Z/a)?sin(2ka) exp(2ika). (30)
For x < —a,
Y(x) = 2(Z/a)? sin(2ka) exp(—ikx), (31)
which yields a backward scattering amplitude
/P =2(Z/a)?sin(2ka). (32)
Thus,
a{2) = 8(Z/a)* sin2(2ka). (33)
For small values of a,
o(d) = 8AYEQ/E — N2/3). (34)

The complete Born series may be obtained by continued
iteration. The exact solution for small values of a is given
by

Otot = |r|2+ |1 _l|2
_ _4N(1 +8EyE - 2N?/3)
1 +4XY(1 4+ 4Eo/E — \Y/3)°

(35)

C. Phase shift analysis

In 1965, Eberly!? developed a formalism for scattering
in one dimension using a phase shift analysis. Lapidus!?
applied this method to the scattering from a single delta-
function potential.

However, more recently Formanek!¢ noted that the
derivation of the partial wave formalism is correct only for
“centrally symmetric” potentials, i.e., symmetric potentials
for which V(—x) = V(x). The potential given in Eq. (1)
does not satisfy this condition. In fact V(—x) = — V(x), i.e.,
V(x) is antisymmetric.

In order to examine the validity of the critique by For-
manek, we carry through the derivation of the phase shift
analysis for electron-dipole scattering. We find that in this
case the partial wave formalism does not yield the correct
scattering cross section.
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For | x| = a we may write the solution of Eq. (2) as

Y(x) = exp(ikx) + fexp(ikex), (36)
where f'is the scattering amplitude and ¢ = %1 to the right
and left of the dipole.

Expanding f in “partial waves”
1
fe=13Y elexp(id;) sind;. 37)
=0

The solutions to the right and left of the dipole are
Y+(x) = exp(ikx) + f+ exp(ikx), (38a)
Y_(x) = exp(ikx) + f- exp(—ikx). (38b)

The scattering amplitudes f+ and f_ are given by f} =
t—landf_-=r or

S+ =M1 =) /(N + B2)y2 = M, (39)
S- =M (=YD =iB)/[(M + 82)y* — N, (40)

In order to examine the validity of Eq. (37) it is necessary
to obtain the “phase shifts”, ¢;, from the boundary condi-
tions given by Eq. (14). This calculation yields, for small
values of a,

tan 6g = (A/ka)/[(Mka) tanka — tanZka — 1]

= [M(A = 1)]/ka, (41)
tan 6; = —(\/ka) tanZka/[(N\/ka) tanka + tanZka + 1].
> —=[A/(A+ 1)] ka. (42)

The total cross section for scattering obtained from the
relation

1
Otot = 2 Z Sin251, (43)
=0
yields

oot = 21 + [(2A2 = 1) /(A + 1)2(E/4Eo)}  (44)

which does not agree with Eq. (35).

Formanek!® has discussed the criteria necessary for
carrying out a phase shift analysis of one-dimensional
scattering. A necessary condition for the analysis is that
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V(—x) = V(x), which corresponds to a centrally symmetric
potential in three dimensions. In the latter case the scat-
tering solutions must be eigenstates of the total angular
momentum. In one dimension the requirement of symmetry
corresponds to the condition that the scattering states must
be eigenstates of the parity operator.

IV. SUMMARY

The quantum-mechanical interaction of a charge and
an electric dipole in one dimension has been studied using
the delta-function potential. It is found that there is one
bound state of a charge and a dipole.

The exact solution to the scattering problem of a charge
from an electric dipole has been obtained and the Born
expansion has also been developed. Finally, it was shown
that a partial wave analysis does not give the correct scat-
tering cross section.

The delta-function potential provides a useful model for
the study of quantum-mechanical systems because the
system is simple and it is possible to evaluate al! integrals
in the calculations easily. Thus, this model provides a useful
pedagogical tool as well as helping to develop insights into
more complex problems.
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