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For a bistable potential which is the sum of two hyperbolic cosine functions, the
Schrodinger equation for the low-lying states of a homonuclear diatomic

molecule can be solved analytically. In this model the potential and the energy
eigenvalues depend on three parameters, and the resulting wave functions are
continuous and have continuous derivatives everywhere. This last property of the
wave functions enables one to generate a family of soluble bistable potentials by
applying the theorem of Darboux to the discrete eigenfunctions of the

Schrédinger equation.

I. INTRODUCTION

Double-well potentials have been used in the quantum
theory of molecules as a crude mode! to describe the motion
of a particle in the presence of two centers of force. Recently
solutions of the Schrodinger equation with these potentials
have found applications in the classical theory of diffusion
in a bistable potential field,! and also in the quantum theory
of instantons.? Because of the rather complicated form of
the force law, only a few exactly soluble models have been
discussed in the literature. The examples most often cited
are the double square-well,? the double oscillator,? the
Manning potential,* and two square-wells separated by a
delta function.? For these potentials the Schrodinger
equation is soluble for all eigenfunctions, and the eigen-
values are the roots of transcendental equations. But in most
of the problems the complete solvability (i.e., the determi-
nation of all eigenfunctions) is not important, since the
distinctive features of the motion in a double-well potential
are reflected in the properties of the low-lying quantum
states of the system.

An interesting example of a bistable potential for which
the wave equation is partially soluble (i.e., few of the lowest
eigenfunctions are known analytically) is the sum of two
hyperbolic cosine functions. The Schrédinger equation in
this case is identical with the equation of wave motion de-
scribing the normal modes of vibration of a stretched
membrane of variable density.’ The advantages of this
model over most of the other models are: (i) the wave
function and the eigenvalues are simple functions, and (ii)
the eigenfunctions and their derivatives are continuous
everywhere. This latter property enables one to construct
other soluble potentials, some having the form of a double
well. In Sec. I1 the solution of the Schrédinger equation is
obtained by Sommerfeld’s technique,® and in Sec. 11, it is
shown that by utilizing Darboux’s theorem,’ other poten-
tials can be found for which the lowest eigenfunctions are
expressible in terms of elementary functions.

II. EIGENFUNCTIONS OF THE BISTABLE
POTENTIAL

Let us consider the one-dimensional Schrodinger equa-
tion
Y+ 2m/h¥)[E - V(x)]y =0 2.1)
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which describes the motion of a single particle of mass m
in the bistable potential

V(x) = (h262/2m)[('/s)£? cosh4fBx v
— (n + )écosh2Bx — (')E2].  (2.2)

This potential depends on three parameters, 8, £, and a
positive integer n. The wave equation (2.1) admits an infi-
nite number of bound states, and the wave function is lo-
calized in space; i.e., the solution satisfies the boundary
condition

Y(x) —0, X — £, (2.3)
In Egs. (2.2) and (2.3), we choose
V(x) = (h26%/2m)v(x) 2.4
and
E = (h28%/2m)e, (2.5)

and also measure the distance in units of 8- !;i.e., set 3 =
1. Thus the wave equation will be transformed to the
equation

V + [e+ (R)EX+ (n + 1)E cosh2x

— (R)E2 coshdx]y = 0. (2.6)

To solve Eq. (2.6), we use the “polynomial method” of
Sommerfeld, and first determine the asymptotic solution
of Eq. (2.6) by considering the differential equation

Yo — [(h)E2(coshdx — 1) — Ecosh2x]y, =0,
(2.7)

which has the same asymptotic form as Eq. (2.6). The ac-
ceptable solution of Eq. (2.7) which vanishes for x = £
is given by

Ya(x) = exp[(—Y4)écosh2x]. (2.8)

Therefore, following Sommerfeld, we write the wave
function Y(x) as
Y(x) = exp[(—Y4)Ecosh2x]¢(x), (2.9)

where ¢(x) satisfies the following differential equation
which is-obtained by substituting Eq. (2.9) in (2.6):
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Fig. 1. Plot of the potential described by Eq. (2.2) for 8 = 1 and £ = 4.
When n = 1, the potential has a “flat bottom,” but for n > 1 it takes the
form of a double well.

¢”(x) — &sinh(2x)¢’(x)
+ (e + n€cosh2x)ép(x) = 0. (2.10)

Now let us consider those solutions of Eq. (2.6) that are
expressible in terms of a finite sum involving cosine or sine
hyperbolic of jx, where j is an integer. These solutions can
be divided into groups of even and odd parities, each group
having two different states. Thus we have

o(x) = i Cyjri1cosh(Zj+ )x (n=2k +1), (2.11)
j=0

d(x) =j§:0 Cyjcosh(2jx) (n=2k), (2.12)

for even states, and
d(x) = jékjo Sy+isinh(2j + Dx (n=2k+ 1), (2.13)
$(x) = jZi:O S,jsinh(2jx) (n=2k), (2.14)

for odd states.

By substituting Eqs. (2.11)-(2.14) in Eq. (2.10), we find
three term recurrence relations for the coefficients Cyj41,
C3j, S2j+1., and S,;. For instance, for even states we ob-
tain

(27 + 1)2 + €] Cojp + (L) + 1 = 2))Cyj—
+ (’/2)5(/1 +3+ 2j)C2j+3 =0 (2.]5)

and

[(2))* + €]Coj+ E[()n + 1 + 8y — j]1Cajr
+E[(n+ 14 1Cr542=0 (2.16)

with similar relations for S5;+; and S,;. Since we are in-
terested in the solution of Eq. (2.10) with a finite number
of terms, the coefficients Cj41 and C»; have to satisfy the
conditions

Cr=Cu42=0 (n even) Qa7

and
Co1=Chi=0

(n odd). (2.18)
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Thus each of the Egs. (2.15) or (2.16) may be regarded
as a homogeneous difference equation with € as the eigen-
value. We observe that for even n and for states of even
parity there are [('5)n + 1] nonzero térms in Eq. (2.12) and
therefore [('h)n + 1] eigenvalues, whereas for even #, but
for states of odd parity, there are ('5)n nonzero terms in Eq.
(2.14) and hence ('5)n eigenvalues. For odd n values we
have ('5)(n + 1) nonzero terms for either even or odd parity
states and therefore n + 1 eigenvalues for states of even and
odd parities. Thus for a given integer n, we have (n + 1)
eigenvalues that can be obtained from the finite expansion
of ¢(x). These states are the (n + 1) low-lying states of the
system. This conclusion follows from the observation that
the number of nodes of ¢ for states of even parity is

N=(R)nn+2) (n even), (2.19)

N = (%)n2-1) (n odd), (2.20)
and for states of odd parity (excluding the node at the ori-
gin) is

N =(R)n(n-2) (n even), (2.21)

N = (%) (n2-1) (n odd), (2.22)

and these are exactly the number of nodes associated with
the lowest levels of the system for a given n. A different
method of obtaining the eigenvalues and eigenfunctions of
Eq. (2.10) is by series solution which is discussed in the
Appendix.

In Table I the eigenfunctions ¢, and their corresponding
eigenvalues ¢, are given forn =0, 1, 2, and 3.

I1I. METHOD FOR GENERATING OTHER
SOLUBLE POTENTIALS

From the solution of the eigenvalue equation (2.6), we
can construct other soluble potentials. These potentials may
be mono- or bistable depending on the integer n that ap-
pears in the original force law [Eq. (2.2)]. The method of
construction is the direct application of Darboux’s theorem
to the solution of the eigenvalue problem.” A version of this
theorem that is applicable to the present problem can be
stated in the following way:

If the solution of

Vit [k —v(X) =0 (k=0,..., n) (3.1)

is known for the set of (n + 1) lowest eigenvalues €g, €1, . . .,
€x, then the set of lowest n eigenvalues of the differential
equation

” 1 ”
Up— T [€k — € — Yo (‘) ] Up—1

Yo
=0, (k=1,...,n) (3.2)

04+

Vo (x) ﬁ'

10 05 0 05 x 10

-027

+ 2]
-04

Fig. 2. Wave functions corresponding to the first three levels of the dou-
ble-well potential (n = 2).

¢(x)
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Table 1. First few polynomial solutions of the eigenvalue Eq. (2.10).

n=20 do(x) =1
T n=1 * o(x) = coshx
¢1(x) = sinhx
n=2 do(x) = £+ [1 + (1 + £2)!/2]cosh2x

¢1(x) = sinh2x

$a(x) = £~ [(1 + EH1/2 — 1]cosh2x
n=3 do(x) = 3Ecoshx + [4 — £+ 2(4 — 2& + £2)1/2]cosh3x
@¢1(x) = 3Esinhx + [4+ £+ 2(4 + 2£ + £2)'/?]sinh3x
¢2(x) = 3Ecoshx + [4 — £ — 2(4 — 2& + £2)1/2]cosh3x
¢3(x) = 3Esinhx + [4 + £ ~ 2(4 + 28 + £2)!/2]sinh3x

=0
©=—(1+§
g=£—1
€= =2[1 + (1 + £9)1/2)
g =-4
@=2((1+8) 1]
€= —[5+E+ 204~ 28+ £2)1/7)
@ =E—5—24+2+E)2
©=24-2%+E)12~5-¢
Q=24+ UH I HES

are given by

up—~1 = Yo(¥r/Yo), (3.3)

where Yo(x) is the ground-state wave function. Thus for a
new potential

v = Yo(1/0)”, (3.4)

the wave equation (3.2) is exactly soluble with the wave’

functions given by Eq. (3.3). We note that for all finite
values of x, v(V(x) is a well-behaved potential since Yo(x)
has no nodes.

This process of generating new potentials from the old
wave functions can be continued n times, each time re-
ducing the number of the wave functions determinable by
this method by one. As an example, let us consider the case
where n = 1 in the potential V(x) [Eq. (2.2)]. The
ground-state wave function for this potential is given by

Yo = coshx exp[—(Y4)& cosh2x]. (3.5)

Substituting Yo(x) in Eq. (3.4), we find the new poten-
tial
2
cosh2x
(3.6)

With this potential the Schrodinger equation (3.2) can be
solved for the new ground-state wave function ug(x),

uo(x) = (coshx)~'exp[—(Yy)écosh2x], (3.7)

a result which follows from Eq. (3.3), and can be verified
by substituting Eq. (3.7) in (3.2). For this new potential the
ground-state eigenvalue is given by

vM(x) = %Ez(cosh4x -D+E+1-

€] — €= 2£ (38)

Now let us consider the same problem when n = 3. For
£ <1, the eigenvalues of Eq. (3.2) are given by

Ao =€ — ¢ =~ 0(82),
A =€ —¢>8~2f+ 0(8),
)\3=€3"€0’:’8+2£+0($2).

Here we observe that for the potential v(!(x) the first and
the second excited states are closely spaced, but both are

(3.9)
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far from the ground state. Thus the spectrum of v('{(x) is
different from that of v(x), since for the latter ¢, — ¢ and
€3 — €; are both small but the spacing between €; and ¢; is
large. To find a potential where only the two lowest eigen-
values are closely spaced, we can apply Darboux’s theorem
for the second time and obtain the potential

pD(x) = uo(1/ug)”. (3.10)

For this potential which is again bistable, the two lowest
eigenvalues are given by A; — Agand A, — Ag. Now from
Eq. (3.9) it is clear that the separation between these ei-
genvalues is of the order £2 when £ « 1, and hence this
potential has a spectrum similar to v(x) (when n = 1). For
values of n larger than 3, this process can generate a number
of bistable potentials.

IV. CONCLUSION

While the solution of the eigenvalue equation (2.6)
predates the formulation of wave mechanics, the bistable
potential function (2.2) does not seem to have been used
previously. Yet the simplicity of the analytic form of the
wave function for the low-lying states makes the wave
equation (2.6) an interesting soluble bound-state problem
in quantum mechanics. Let us summarize some of the in-
teresting features of this eigenvalue problem:

(a) The potential depends on three parameters, and hence
one can fit different spectra by adjusting these parameters.
Also, for the same potential function, one finds both mo-
nostable and bistable quantal systems. The former property
makes Eq. (2.2) a convenient force law for the description
of a homonuclear molecule.

(b) This eigenvalue problem, like many other exactly
soluble problems, can be solved by Sommerfeld’s polyno-
mial method. Thus the solution of Eq. (2.10) for ¢(x) ad-
mits polnomials of coshx and sinhx for even and odd parity
states, respectively.

(c) Higher eigenvalues may be obtained in terms of el-
liptic integrals by using the WKB approximation.

(d) Finally, one can use these solutions to test approxi-
mate schemes carried out for complex systems, or to solve
other problems such as the solution of the. Fokker-Planck
equation 8
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APPENDIX

In this appendix we consider an alternative way of solv-
ing the eigenvalue equation (2.10) using power series
method. This is done by introducing a new variable z de-
fined by

0<z<w. (A1)

Now, by changing the variable x in Eq. (2.10) to z, we find
the differential equation

z2(z+2)¢" + [1 +z = (h)éz(z + 2)]¢/
+ (/e + nE+néz)p =0, (A2)
where primes indicate derivatives with respect to z. This

equation has a regular singular point at z = 0, therefore we
seek a solution of the form

d(z) = z2°/(2). (A3)

By substituting Eq. (A3) in (A2) and putting the coef-
ficients of the term z*~!f(z) equal to zero, we obtain the
indicial equation for s and the differential equation for

252 =, (A4)

zZ(z+ 2)f" + [2s+ 1 = (K)éz)(z + 2) — 11
+ [s2— (Ph)s(z + 2)
+ (fa)(e + nE+nkz)lf=0 (A5)
From Eq. (A4) it follows that we have two sets of inde-
pendent solutions: the even states for s = 0, and the odd

states for s = 5. Let us write f(z) as a power series in z +
2 = 2 cosh?x:

z = cosh2x — 1
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Nz) = ZO (z + 2)*e. (A6)
j=
Substituting Eq. (A6) in (A5), we find

1
a;
jg() J

(z+2)f+"+'5(—%s+zn-—%(j+ a))

+@+2Yr [(j+o)ji+to~— 1)+s2+%(e+n£)
—%n$+(2s+l+£)(/+ o)l

+(z+ 2+ o)1 =2+ a)]}=0. (A7)

For polynomial solutions of Eq. (A2), the series in Eq. (A7)
has to terminate and hence the coefficient of (z + 2)/+o+!
for some integer j = k must vanish. This condition gives a
relation for g:

n=2k+ o+s). (A8)

One can verify that Eqs. (A3) and (A7) yield the same re-
sults as Egs. (2.15) and (2.16).
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