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Integral equations and scattering solutions for a square-well potential
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s-wave scattering solutions of the Schrodinger equation with an arbitrary central
local potential are considered. Green’s functions and integral equations are

derived for scattering solutions subject to a variety of boundary conditions. Exact
solutions are obtained for the case of a finite spherical square-well potential, and

properties of these solutions are discussed.

I. INTRODUCTION

Whitten and McCormick! have emphasized the desir-
ability of introducing the Green’s function as early as pos-
sible in the physics curriculum. Using the variation of pa-
rameters method they have provided an excellent intro-
duction to this topic. Recently this method has been ex-
tended by Byrd,2 who has derived formulas for the Green’s
function corresponding to one- and two-point boundary
conditions. In the present work we show that the Green’s
function method can be easily applied to convert the radial
Schrédinger equation (a second-order differential equation)
into an integral equation whose solution satisfies the im-
posed boundary conditions. We then consider the specific
boundary conditions which lead to the integral equations
for the regular, Jost and physical s-wave scattering solu-
tions.? Exact solutions to these integral equations are ob-
tained for an attractive square-well potential. In most
quantum-mechanics text books,* the square-well potential
is solved only to the extent that an expression for the phase
shift is deduced. This is done by matching solutions at the
edge of the potential. Scattering solutions such as the reg-
ular solution, the Jost solutions, and the physical wave so-
lutions are rarely mentioned. A discussion of even one of
these solutions is not common. Using the Green’s function
approach these solutions are obtained without any matching
and the phase shift follows by examining the asymptotic
behavior of any of these solutions. In addition, relationships
between the various solutions and expressions for the T and
S matrices are easily obtained. This introduction to the
derivation of these important scattering solutions will also
provide some insights regarding the boundary conditions.

In Sec. I1 we derive the proper Green’s functions and set
up the integral equations for the different solutions. In Sec.
111 we obtain exact solutions to the integral equations for
a square-well potential. In Sec. IV we study the asymptotic
forms of the solutions. Throughout this work we assume
positive energy (£ > 0) and zero orbital angular momentum
(/=0).

II. BOUNDARY CONDITIONS AND
INTEGRAL EQUATIONS

As mentioned earlier, Byrd? has extended the work of
Whitten and McCormick' to obtain specific formulas for
the Green’s functon for one- and two-point boundary con-
ditions. In this section we review his formulas and derive
integral equations for the regular, Jost and physical solu-
tions? for a central local potential V(7).

Following Byrd,? a particular solution u,(r) of the
equation
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u”(r) + p(ryu’(r) + q(r)u(r) = R(r), ey

may be expressed for a single-point (ro) initial condition
as

up(r) = f "Gs(r.r)R(r)dr (22)
ro
and for two-point (a and b) boundary conditions as
b
up(F) = f Gr(r.r')R(F)dr, (2b)

where the subscripts S and T refer to single- and two-point
conditions. The Green’s functions Gs(r,r’) and Gr(r,r’) are
obtained by using two different methods. If () and u»(r)
are any two linearly independent solutions of the homoge-
neous equation associated with Eq. (1), then

/ — ’
Gs(r,r’)=u1(r Yua(r) ul(l’)uz(r),
w
where W is the Wronskian of u;(r) and u,(r), and is inde-

pendent of r.
The complete solution to Eq. (1) may be written

u(ry = Au\(r) + Buy(r) + upy(r). 4)

(3)

The initial boundary condition is imposed on u(r) to de-
termine the constants 4 and B.

For the two-point boundary conditions,
u(rux(r)/W, a<r =<r
w (Nu(r')/W, r<r <b.
In this case, however, any two linearly independent solutions

(of the homogeneous equation) will not do. If the boundary
conditions at @ and b are written

Cyu(a) + D/ (a) = U,,

Gr(rr) = (5)

and
Cu(b) + Dru’(b) = Uy (6)

[this form of boundary condition is referred to as unmixed
(in a and b)] then u; and u; are to be selected to satisfy
similar equations, namely

Ciui(a) + Duy(a) = 0,
and
Czuz(b) + Dzué(b) = 0. (7)

The general solution is again of the form (4), with the
proviso that u; and u, satisfy Eq. (7) and that 4 and B are
selected to satisfy the boundary conditions (6).

We illustrate an application of the above results by
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considering various solutions to the differential equation
u” (ry + k2u(r) = v(r)u(r), ®)

This equation, which is a special case of Eq. (1) with p =
0 and g = k2, is the Schrodinger equation for the zero or-
bital angular momentum radial wave function.> The square
of the wave number is proportional to the center of mass
energy, that is, k2A2 = 2uE and v(r) = (2u/h?)V(r), where
V(r) is the potential energy and u is the reduced mass.

A. Regular solution ¢(k,r)

The regular solution is defined as the solution of Eq.
(8) that satisfies the following conditions? at the origin,

¢(k,0) =0and ¢'(k,0) = 1. 9)

The two linearly independent homogeneous solutions can
be taken as u(r) = sinkr and uy(r) = coskr. Then using
Eq. (3) we find

Gs(r,r') = k=tsink(r — r’). (10)
Finally imposing conditions (9) on the form (4) we get
o(k,r) = k= 1sinkr

+ k! j; " sink(r — 1Yo )k rydr. (1)

B. Jost solutions f+(k,r)

These solutions are defined by boundary conditions im-
posed at infinity. They are also called irregular solutions
since they are not regular at r = 0. f*(k,r) and f~(k,r) are
linearly independent except for k = 0. The boundary con-
ditions are3

lim e*krfx(k,r) =1

r— o

(12a)
and

lim e ikrf¥'(k,r) = +ik.
The condition (12b) is not usually seen, but is to be under-
stood when only (12a) is written. Choosing any two linearly
independent solutions to Eq. (8) leads (as it should) to the
same single-point Green’s function as before, Eq. (10).
Imposing the boundary condition (12) we find after inter-
change of the limits.

f:i:(k’r) = e:l:ikr

. f " sink(r — Yo )fE(kr)dr. (13)

(12b)

C. Physical solutions Y*(k,r)

The physical solutions are defined to be zero at the ori-
gin and to have a specific asymptotic form at infinity. There
are many equivalent asymptotic forms that are encountered
when studying the physical solution. The three standard
forms are® [to avoid confusion we deal with Y*(k,r)
only]

lim Y+ (kr) — (i/2)[e~ % — S(k)eikr]

r—-o

(14a)
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— sinkr + T(k)ei*” (14b)
— eiégin(kr + 0), (14¢)

where the functions S(k), T(k), and d(k) are referred to
as the S matrix, T matrix, and phase shift, respectively.’
However, to illustrate the boundary conditions (6) it is more
convenient to use the following form:

lim efkr [+ (k,r) + ik—WH (kr)] =i (15)

By substitution it is easily seen that each form of Eq. (14)
satisfies Eq. (15). The boundary condition at the origin #(0)
= 0 can be expressed in the notation of Eq. (6) by choosing
C, =1, D, =0, and U, = 0. One of the appropriate ho-
mogeneous solutions is then obtained according to Eq. (7)
with the above values of C| and D by the condition

u(0) =0, (16a)

which is satisfied by choosing u,(r) = sinkr. The other
suitable solution u,(r) must satisfy Eq. (7) in the form
Coux() + Dyus(») = 0. The ratio of D,/C is determined
from a comparison of Egs. (6) and (15) to have the value
i/k. Thus u, must satisfy the equation

us() + ik ~lus(@) =0, (16b)

which is satisfied by choosing u»(r) = e’ ”. Substituting
ui(r) and us(r) into Eq. (5) for the Green’s function
gives

—k~lsinkr'eikr, 0 <r <r
Grir) = {—k“e"""sinkr, r<rse (7

The constants A and B in the general solution Eq. (4) are
casily evaluated. The boundary condition at the origin re-
quires B = 0 and the condition at infinity, Eq. (4) requires
A = 1. The complete solution is then

Yt (k,r) = sinkr
— k- lpikr J;r sinkr’v(r W+ (k,r")dr’

— k= sinkr f ® eikrp(r W (ko )dr. (18)
Similarly for ¥~(k,r) with Eq. (15) replaced by
lim, e kr[Y=(r) — ik ="~ (r)’] = —i we find
Y~ (k,r) = sinkr

— k= le~ikr f "sinkr'v(r' W (k,r')dr’
o

— k- sinkr f % etk Y-k, )dr. (19)

IIl. SOLUTIONS FOR A SQUARE-WELL
POTENTIAL

In this section we solve the Egs. (11), (13), and (18) for

a square-well potential defined by
o(r)=—vo;,, r<a
=0, r>a. (20)

Any solution for the square-well potential can now be
written

u(r) = uy(r)f(a —r) + ux(r)o(r — a), (21)
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where 0 is a step function defined by
Br=r)=1r>r

=hr=r
=0, r<r. (22)

Using for u(r) in Eq. (21) the desired functions ¢, f*, and
Y* we can write down the integral equations for each of the
solutions.

A. Regular solution ¢(k,r)

Writing
e(k,r) = ¢i(kr)f(a —r) + ¢a(k.r)b(r — a), (23)
and using Eq. (20) in (11) we get two equations,
o1(k,r) = k= lsinkr .
-2 f sink(r — )1 (kr)dr’,  (24a)
0

and

@a(k,r) = k~'sinkr
-2 j; “sink(r — r')e1(kr")dr. (24b)

Since Eq. (24a) is a Voltérra equation, the solution is dif-
ficult to obtain. However, from the differential equation for
region one we can immediately infer that in order to satisfy
the initial conditions, Eq. (9), the solution must be of the
form

kg 'sinkor.

ei(kr) = (25)

Substituting Eq. (25) in (24a), we see that for Eq. (25) to
be a solution

k§ = k2 + vo. (26)
Next we substitute Eq. (25) in (24b) and get
@y(k,r) = Aysinkr + B,coskr, 27
where
Ay = ﬁ; (k sinka sinkga + kocoska coskoa), (28a)
and
B, = 1 (k sinkga coska — kgsinka coskpa). (28Db)

kko

It is interesting to note that solutions ¢, and ¢, automati-
cally satisfy the uspal matching conditions at r = a, ¢(k,a)
= ¢a(k,a), and ¢ (k,a) = ¢,(k.a).

B. Jost solutions f+(k,r)
Writing
frkr) = fi(kr)(a = r) + fE(kr)0( — a), (29)
Eq. (13) can be reduced to

Sikr) = etr 4 %2 f “Sink(r — r)ft(kr)dr (30a)
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and

ﬁ(k,r) = plkr, (30b)
To solve Eq. (30a) we assume
ﬁ(k,l‘) =A]€ik"’+Ble—ik”’. (31)

Since the boundary conditions, Eq. (12), are imposed not
at the origin but at infinity, where they are satisfied by f3,
Eq. (30b), we must use two unknown constants .4 and B for
fT. Substituting Eq. (31) in (30a) and setting to zero the
coefficient of ek we get

k2= k2 + v (32)

as expected. Setting to zero the coefficient of e*ik”, we
get

Ay = [(ko + k)/2ko] e~itko=k)a (33)
and
B\ = [(ko —k)/2ko]eitkotkia, (34)
A similar procedure for f~(k,r) leads to the result
S (k) = fH(k,r)*, (35)
where the asterisk denotes complex conjugation.
C. Physical solution y*(k,r)
If Y is written
YHkr) = Yi(kr)bla —r) + Y3(kr)b(r — a), (36)

Eq. (18) becomes
YT (k,r) = sinkr

+ etk J; “sinkr gt (k' )dr’

+sinkr [ “ettryterydr  (37)

and
Vi (k,r) = sinkr
144

0 ik J; “sinkr'yF(kr)dr. (37b)

To solve Eq. (37a) we note from Eq. (16a) the condition
Y1 (k,0) = 0 and therefore try

Y = Csinkgr. (38)

Again setting to zero the coefficients of e2/%o" we get ki =
k2 + vy, and doing the same for the coefficients of e A" we
get

+ —

C = 2k[(ko — k)eilko+h)a

+ (ko + k)e—itko=k)a]=1, (39)
Substituting Eq. (38) into (37b) we find
V3 (k,r) = sinkr
__2(kosinka coskoa — k coska sinkoa)
(kO —_ k)ei(k0+k)a + (kO + k)e—l'(ko—k)a
X eikr. (40)
Similar for Y~ using Eq. (19) we find
Y(kry = yr(kr)*, (41)

which completes our list of solutions.
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IV. ASYMPTOTIC FORMS OF SOLUTIONS
AND PHASE SHIFT

In this section we discuss the asymptotic behavior of
@ (k,r) and y*(k,r) at infinity and of f*(k,r) at the origin,
and extract an expression for phase shift. We show that the
expression for the phase shift is the same for the three cases.
We also derive expressions for the S matrix and 7 matrix
in terms of the phase shift.

Using Eq. (27) we can write for r > a,

o(k,r) = ¢y(k,r) = Rsin(kr + 6), (42)
where
k tankoga — kotanka
tand =
an ko + ktankatankoa (43)
and
1
R = P (k3cos2koa + k2sinkoa)'/. (449)
0
With some manipulation and using
tana + tanf3
+Bf)=———=
tan(a + ) 1 — tanatan8’
we obtain the familiar result,®
6 = —ka + tan~'[(k/ko) tankoa]. (45)

The phase shift can also be determined from the Jost
solutions. However, for the Jost solutions the incoming
plane wave is at r = = and therefore the phase shift can be
found from the (asymptotic) behavior at » = 0. From Eq.
(31), (33), and (34) we have for r = 0,

fH(k,0) = f1(k,0)
1 .
- —i(ko—k)a
ke [(ko + k)e
+ (kO —_ k)ei(k0+k)a]

= zl— {(kocoska coskoa

0
+ ksinkasinkga)
+ i(kosinka coskoa

—k coska sinkoa)]. (46)

This function, the Jost solution evaluated at r = 0, is called
the Jost function.?

Equation (46) is standardly written in polar form? to
exhibit the phase shift J,

f*(k,0) = |f*(k,0)[e~", (47)

where clearly
tané = — Imf*(k,0)/Ref* (k,0),

where Re and Im refer to the real and imaginary parts, re-
spectively. With the aid of Eq. (46), Eq. (48) can be shown
to be identical to Eq. (43) confirming that the solutions
@(k,r) and f*(k,r) lead to the same phase shift. Alterna-
tively we could have used f~(k,0) to write

S (k.0) = |f~(k,0)|e” (49)

and, from Eq. (35), |/~ (k,0)| = |f*(k,0)|. The sign of the
phase in Eq. (47) is the result of the use of Newton’s
boundary conditions which are now standard but are dif-

(48)
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ferent from the boundary conditions originally introduced
by Jost, as mentioned in Ref. 3.

With the aid of Eq. (46) we can see from Eq. (44) that
R = k= '|f*(k,0)|, and thus Eq. (42) becomes, for r >
a,

o(k.r) = k=|f*(k,0)|sin(kr + ). (50)

To get an expression for the phase shift from the asymptotic
behavior of the physical solution Y *(k,r) it is convenient
to first express Y+ (k,r) in terms of ¢ (k,r). Using Egs. (25),
(27), (38), (39), (40), and (46) and after some manipulation
we find

YHkr) = ke(kr)/f*(k,0). (51)

This is the standard relation between Y+ (k,r) and ¢ (k.r).
Using Eqgs. (47) and (50) we easily deduce the form of
ytk,r)atr>a,

Vkr) = kk=[f*(k,0)|sin(kr + &)

|/*(k.,0)|e~i®
= efdsin(kr + 6),

(52)

which is in agreement with the boundary condition, Eq.
(14c).

It is customary to express the boundary condition for
Y *(k,r) at infinity in terms of the 7 matrix [see Eq. (14b)]
or the S matrix [see Eq. (14a)]. Thus we can also obtain
solutions for these functions. From Egs. (14b), (40), and
(46) we find that

kosinka coskga — k coskasinkoa

kof*(k,0)

T(k) =

_ _Imf*(k,0)
T k0

Since siné = —Imf*(k,0)/|f*(k,0)| the expression for
T(k) can be rewritten in the more familiar form,®

T(k) = e%sinod. (53)

Similarly putting Eq. (40) in the form of Eq. (14a) we arrive
at the standard result® for the S matrix

S(k) = e, (54)

Finally, by comparing Eqgs. (53) and (54) we obtain the
usual relation between S and T as®

S =1+42T. (55)

V. CONCLUSIONS

In this paper we have introduced the Green’s function
appropriate to different solutions and have shown how the
phase shift, T matrix, and S matrix can be derived from
these solutions. In order to illustrate the ideas most simply
we limited ourselves to the s-wave analysis of an attractive
square-well potential, its solutions being very well known.
Obtaining the solutions to the above-mentioned integral
equations involves some integration and is therefore (for the
square well) more difficult than the familiar algebraic
method of solution, which involves matching by invoking
the continuity of the solution and its derivative at » = a.
Nevertheless we feel that an introduction to the Green’s
function integral equation approach is important for several
reasons: (i) matching may not be an available alternative,
(ii) advanced treatments®'0 of scattering theory emphasize
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the Green’s function approach, (iii) the integral equation
formulation is a very convenient starting point for the in-
troduction of approximations,!' e.g., the familiar Born
approximation where the wave function to be integrated is
replaced by its plane wave counterpart, and (iv) in the study
of nonlocal potentials'2 the radial Schrodinger equation is
an integrodifferential equation and the integral equation
approach is more natural.

Solutions for / > 0 can be obtained in exactly the same
manner as for / = 0 except that the presence of /(I + 1)/r?
term in Eq. (9) introduces spherical Bessel and Neumann
functions in place of the sine and cosine functions encoun-
tered for / = 0. Although we have assumed E > 0 in this
work the negative energy or bound state problem can be
equally easily handled by this approach (this will be re-
ported in a forthcoming communication).
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