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We consider the problem of an electron interacting with a surface potential
barrier which includes the spin-orbit interaction. An exact solution of the
Schriodinger equation is given for the case of a step potential. For smooth barrier
profiles, the time- dependent Schrédinger equation is numerically solved, and the
time evolution of the spin-up and spin-down components of a wave packet is

displayed in a series of pictures.

I. INTRODUCTION

The spin-orbit (SQ) interaction between an electron
and the surface barrier of a metal has been studied in the
past in order to estimate its effect on the conduction elec-
tron-spin relaxation.!-2

The analysis of the conduction electron-spin relaxation
induced by the presence of clean and dirty surfaces is rele-
vant for the interpretation of experimental results on
polarized electron emission from magnetic materials,? on
the Knight shift of small superconducting particles* and also
on the conduction electron spin resonance linewidth of small
normal metallic particles.-

Although estimates show that in most of the above
mentioned cases the SO interaction plays a minor role, the
problem is still interesting from a pedagogical point of view.
The three-dimensional Schrodinger equation can be exactly
solved for the case of a step potential surface barrier (Sec.
I1I) and, in the case of a barrier with arbitrary profile, the
numerical solution of the time-dependent Schrédinger
equation allows to visualize the time evolution of an electron
wave packet with both spin-up and spin-down components
as it strikes the barrier (Sec. IV).

The results of the computation are shown in Sec. VI.

II. MODEL

Let us consider a semi-infinite metal. The metal is de-
scribed by a Sommerfeld model, that is, a free-electron gas
of density n (electrons per cm3) with a surface potential
barrier given by

V(z) = — Vo/(e?/a + 1). n

The coordinate system is chosen with the z direction
perpendicular to the surface of the metal. The step potential
barrier corresponds to the limit a — 0. kp = (3w2n)!/3is
the Fermi momentum and Er = h2kz/2m is the Fermi
energy. ¢ = Vo — Er is the work function of the metal. m
is the free-electron mass and £ is Planck’s constant.

We consider the Hamiltonian?

= — (h2/2m)V2 + V(z) + (1/2m2c?)s X p- VV(2).
2)
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Here s and p are the spin and momentum electron operators,
¢ is the velocity of light in vacuum, and V denotes the gra-
dient operator. The spin quantization axis is chosen along
the z direction. The first term describes the electron kinetic
energy, the second term is the surface potential and the third
term represents the SO interaction responsible for the finite
probability of spin flip when the electron strikes the bar-
rier.

Since V(z) has translational invariance in any direction
perpendicular to the z axis, the x and y components of the
wave vector k = p/h are constants of the motion.

Thus, the eigenfunctions of H are spinors of the form

d(x,p,2) = x(z)eikxx+hyy), 3)

With the wave function (3), the three-dimensional Schro-
dinger equation

H¢ =E¢, )

reduces to the following one-dimensional Schrédinger
equation for x(z),

Hyx(2) = ex(2), ()
where
h? d?
2m dz?
h? dv(z)
amie? dz (axky — ayky) (6)
and € = E — h2k7/2m with k} = k2 + k3. In writing Eq. (5)
we used the Pauli matrix representation for the spin oper-
ators = (h/2)a.®
In general, the system of differential equations (5) cannot
be solved analytically in a closed form. However, for a step
potential (@ — 0), there is an exact solution as it is shown
in Sec. 111
The three-dimensional time-dependent Schrédinger
equation corresponding to this model is
0¢(x,y,2,t)
ot '

Using a wave function of the form
B(x,p,2,1) = P(z,t)eiUxx+lp)=il(E= )R}t 8)

1= =

+ V(z)

H¢(x,y,z,t) = ih N

© 1979 American Association of Physics Teachers 452



Eq. (7) reduces to a one-dimensional time-dependent
Schrédinger equation, whose formal solution can be writ-
ten

Y(z,1) = e IH/M= 100 (z,15). )
To calculate numerically the time evolution of ¥(z,7) we

consider the metal and the vacuum contained in a quanti-
zation box of rigid walls, of length L > a.

III. EXACT SOLUTION FOR A STEP

BARRIER
In the limit ¢ — 0, Eq. (1) becomes
V(z) = =Vob(—2), (10)
where 8(z) = 1 for z > 0 and 6(z) = 0 for z < 0. Thus,
W _ v, (1)
dz
where 8(z) is Dirac’s § function. Equation (5) becomes
hradix(z)
P O = Vab(=2)x(2)
h2A 0 K+ _
+225(2) (k_ o ) x(2) = ex() (12)

where k* =k, & ik, and A = Vo/2mc2.
For ¢ > 0 we try the solution

eiKz +r e—iKz
x(z) = (ue-”“ T ) (13)
for z < 0 and
_ t1‘eikz
X_(Z) - (tleikz), (14)

for z > 0, where
K2 = (2m/h?)(e + Vo),
k2= (2m/h?)e. (15)

This solution corresponds to a plane wave with spin up
(“up” means in the positive z direction) coming from the
bulk of the metal with amplitude one, which is partially
reflected at the surface with spin up (amplitude ) and spin
down (amplitude ;) and partially transmitted to vacuum
with spin up (amplitude #¢) and spin down (amplitude
ty).

The continuity condition on x(z) at z = 0 requires
that

l+r=n r=t,. (16)

Furthermore, due to the presence of the é function in Eq.
(5), it is required that the derivatives x’(0*), x’(0~) and the
function x(0) satisfy the relation®

0 —x-0 = 420K
which leads to the additional conditions
ikty + iKry — iK = Ak*yy
ikt; + iKr, = Ak™ty.

From Egs. (16) and (18) we obtain

)X(O), (17)
(18)
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ty=1+ry = 2K(k + K)/A, (19)
ty=ry=—2KAk*/A,

where A = (k + K)2 + A2k?2 The corresponding reflection
and transmission coefficients are

Ry = |r1]2 = [(K? — k2 — A%})/A)?,
Ty = |t1]2 = 4K%(k + K)?/A2
R =T, =|r|?=|1|? = 4K2A4%{/A%  (20)

It is noteworthy that the corrections introduced by the
spin-orbit interaction are of the order of 42 for 4 «< 1 (as
it is the case in metals).

For € < 0, the electron is totally reflected by the barrier.
Equations (19) and (20) are still valid if we replace k by ik’
where k' = —(2m/h)/2¢. In this case we obtain

Ry = (K2+ k'2— A%}/ |42,
T) = 4K2(K2 + k’2)/| A'|2,
R, = T1=4K2A2k,2/|A’|2, 21
where |A’|2 = (K2 — k’2 + A2k?)? + 4K2k’2. Note that

R} + R| = land K2 + k’2 = (2m/h2)V,. Up to order 42
we obtain

R} = [K2k}/(mc2)?|(h2/2m)?, (22)

which is independent of V.

For an electron on the Fermi surface is k2 = k% — K2. If
we write K = kg cos 8 and make an average over cosd be-
tween 0 and 1 (because only the electrons moving towards
the surface have to be considered) we obtain

R, = (2/15)(Eg/mc?)2. (23)

This value was previously derived by Lisin ez al.,! who
showed in a very elegant way that in the first Born ap-
proximation the value of R'; (which they call ¢) is inde-
pendent of the profile chosen for ¥ (z).

IV. NUMERICAL CALCULATION

To solve numerically Eq. (9) we use the technique of
Goldberg et al.,'° generalized to include the spin-orbit in-
teraction. The Hamiltonian (6) can be written in the
form

__h2d h? _dV(z)p
= oman ™ Viz) + i dz & (24)
where K is the matrix
. {0 kT
K= (k‘ 0) (25)
and we shall denote the spinor y/(z,?) by
¢1(Z.t))
zZt) = N 26
¥(z,1) (¢1(2,t) (26)

where ¢1(z,7) is the amplitude of probability for an electron
with spin up and, analogously, ¢,(z,t) for spin down.

For the numerical calculation we use the following dis-
crete functions:

Wat) = V) — v, ),

i T €2)

t = én and z = ¢/j where § and ¢ are appropriate intervals
of time and space, respectively, and » and j are integers. j
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Fig. 1. Time evolution of a wave packet with k = 1.0 X 108 cm~'ina
potential barrier with a = 12.5 X 1078 cm. The full line represents the spin
up component and the dotted line represents the spin down component
enlarged by a factor 0.8 X 1011

runs from O to J, where J = L /¢ and n runs fromOup toa
value large enough so that the wave packet reaches and
leaves the barrier.
Using Caley approximation
. —iH\6 1—i6H)/2h
h 1 +idH /2K
and following the algebra of Ref. 10 we obtain the following
discrete form for Eq. (9):

VIH A+ (D) + ik = 2090 4 Yot —pE Ry
= Q"+ p£KY" (29)
where A = 4me’2/dh, p = €2/2mc?, T = 2me’2/h2, and
T= =i+ Q=TV+idMy =y, (30)

(28)

Assuming it is possible to write an iterative expression
of the form

Yl =yt + 1, (31)

where the matrix &; and the spinor 7 are defined by Eq.
(31), then Eq. (29) becomes

=XV +iN—2) + 6 - pgK]T
X [-y2 4+ Q) — f7 + o5KYD]. (32)
Comparing (32) with (31) we recognize that
1=V +iN—2+¢& — ptK)™! (33)
and
f-r= =4 + p&KY] = 1)),
from which we obtain the folloWing iterative equations for

éand f
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&=2-TV,—iN—(¢-1)"" + pgK,
=+ pEKY) + &7 (34)
Writing j = 1 in Eq. (29) and comparing with Eq. (31)
for j = 1 we obtain
é1=2-TV;—ix+p&ik, f1= 07+ pf1RYL.  (35)
Writing j = J — 1 in Eq. (31) we obtain
S = =07 (36)

which is a particular case which results of inverting Eq.
(31), namely

=) WRE - (37)
Thus, given the initial wave packet 9, from Eq. (30) we
know Qf and from Egs. (34) and (35) we obtain /7. Then Eq.

(36) gives the value of ¢/)_, and by iteration Eq. (37) gives
y}. Continuing the iteration we obtain ¥} for all j and n.

V. NUMERICAL PARAMETERS

The numerical values of the parameters used in the cal-
culation were the following: m = 0.91 X 10~27 g, h = 1.05
X 10?7 ergsec, Vo =125 X 107 2erg (=7.8 eV), k, = k,
=10X108em™!, L =1.57 X 10~%¢cm, 6 = 5.554 X 1018
sec, and € = 1.57 X 10~% cm. The calculations were per-
formed for two barrier profiles with @ = 3.0 X 10~8 cm and
12.5 X 1078 cm. The initial wave packet is the normalized
Gaussian curve

eikze-(z—zo)2/2a?, (1

RCUES o T

with zo = L/4 and ¢ = 7.85 X 1078 cm. The calculations

—
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Fig. 2. Time evolution of a wave packet with k = 1.0 X 108 cm™!in a
potential barrier with @ = 3.0 X 10~8 c¢m. The full line represents the
spin-up component and the dotted line represents the spin-down component
enlarged by a factor 0.715 X 10'1.

}
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Fig. 3. Time evolution of a wave packet with k = 1.423 X 108 cm~!ina
potential barrier with @ = 12.5 X 108 cm. The full line represents the spin
up component and the dotted line represents the spin-down component
enlarged by a factor 0.8 X 10!!.

were made for two values of k: k= 1.0 X 108 cm~! (corre-
sponding to € = 3,79 eV) and k = 1.423 X 108 cm~! (cor-
responding to ¢ = 7.9 eV). These parameters satisfy the
convergence requirements pointed out in Ref. 10.
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1200 1440 1560

Fig. 4. Time evolution of a wave packet with k = 1.423 X 108cm~'ina
potential barrier with @ = 3.0 X 10~8 cm. The full line represents the
spin-up component and the dotted line represents the spin-down component
enlarged by a factor 0.66 X 10!1.
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a=12.5x10° em.

k=1.0xi0% em™

Px 10"

k=1.423 x 10® cm!

0 00 7200 1800 2400
Fig. 5. Probability P that the wave packet in a barrier with @ = 12.5
% 1078 cm is found with spin down at time ¢ for k = 1.0 X 108cm™! and
k=1423X108cm~L.

VI. RESULTS AND DISCUSSION

The time evolution of the wave packets |$1(z,t)[2 (full
line) and | ¢, (z,1)|? (dotted line) for different energies (¢)
and barrier profiles (a) is shown in Figs. 1-4. In the graphs
the scale of the probability density for spin down, |¢(z,¢)]2
has been enlarged by the factors 0.8 X 1011, 0.715 X 10'!,
0.8 X 101, and 0.66 X 10! in Figs. 1-4, respectively, for
the sake of clarity in the display. The numbers in the upper
left corners of each square of Figs. 1-4 denote the time in
units of 8. The base line of the wave packet corresponds to
its energy referred to the potential. Figure 1 corresponds
to a wave packet with k = 1.0 X 108 cm™! in a potential
barrier with @ = 12.5 X 10~8 cm, and Fig. 2 corresponds
to the same wave packet in a barrier with g = 3.0 X 103
cm. Analogously, Figs. 3 and 4 correspond to a wave packet
with k = 1.423 X 108 cm™! in barrier witha = 12.5 X 108
cm and a = 3.0 X 1078 cm, respectively.

When k = 1.0 X 108 cm™! (e < V), the wave packet with
spin-up strikes the barrier and is reflected with spin-up and
spin-down components. When k& = 1.423 X 108 ¢cm™! (e
> Vy), the wave packet with spin up is partially reflected
and partially transmitted with spin-up and spin-down
components. The build up of the spin-down component
during the time evolution of the wave packet can be followed
in Figs. 1-4.

a=3x10"%m
O ka0xi0%em™
)
»
Q
Sr k=1.423 x 10% cm™
o 1 1
0 €00 1200 1800

Fig. 6. Probability P that the wave packet in a barrier witha = 3.0 X 10~8
cm is found with spin down at time ¢ for k = 1.0 X 108 cm~' and k = 1.423
X 108 em™1,
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V3
=O Fig. 7. Spin-flip probability
= in reflexion, P (), as a
a L function of the barrier pa-
rameter a (see remarks in
the text).
1L S
IO0 5 10

a(x10°8 cm)

The strong oscillation of the wave packet in Fig. 3 for ¢
R 15604 is a spurius consequence of its interaction with the
rigid wall of the quantization box. In Fig. 3, the reflected
part of the wave packet is not apparent because, due to the
smoothness of the potential, the reflexion coefficient is
small.

The probability that the wave packet is found with spin
down at time ¢,

PO = 610l dz

is plotted as a function of ¢, for the four cases considered
above, in Figs. 5 and 6. Within our computation times,
saturation was clearly observed in only one case: k = 1.0 X
108cm™!, a4 =3.0 X 108 cm.

In Fig. 7 we plotted P(«) for k = 1.0 X 108 cm~'as a
function of a. The curve is an interpolation between the
points corresponding to a = 0 [exact result, Eq. (21)], a
= 3.0 X 1078 cm (numerical result taken from Fig. 6), and
a = 12.5 X 10~8 cm (numerical result extrapolated from
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Fig. 5). Within the first Born approximation, which is ex-
tremely accurate for this problem, P(«) is independent of
the barrier profile.! Singe we find a change of 10% in P(«)
for a in the range 0-12.5 X 108 ¢m, this change must be
attributed to the accumulation of numerical errors.

‘We are in the process of generating a motion picture
showing the time evolution of the wave packets under the
different conditions considered in this paper.
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