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Hydrogen atom and relativistic pi-mesic atom in N-space dimensions

Michael Martin Nieto

Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New

Mexico 87545
(Received 12 January 1979; accepted 27 June 1979)

We derive in simple analytic closed form the eigenfunctions and eigenenergies for
the hydrogen atom in N dimensions. A section is devoted to the specialization to
one dimension. Comments are made on the relation to the harmonic oscillator,
the ground-state energy per degree of freedom, the raising and lowering
operators, and the radial momentum operators. By particular changes of
variables, the relativistic pi-mesic atom is solved in the same functional form.

I. INTRODUCTION

The two problems which are commonly discussed in
three-dimensional quantum mechanics are the hydrogen
atom and the harmonic oscillator. These problems can be
exactly solved for all angular momentum L, not just for L
= 0. The relationship between these problems is very deep
since, as was first observed by Schrodinger,' the solutions
to the quantum hydrogen atom and harmonic oscillator
problems are related,'~> although not totally equivalent.®
Schrodinger’s interest in this connection was part of the
incentive for deriving his factorization method to obtain the
solutions of second-order differential equations.'78 This
method was beautifully expounded in the work of Infeld and
Hull.?

The harmonic oscillator has been thoroughly discussed
in N-space dimensions.2-!0-13 The N-dimensional hydrogen
atom, on the other hand, is not so well known. The peculiar
one-dimensional atom has been controversially dis-
cussed,’#-!7 and literature exists as well on the two-di-
mensional atom.!#!® One can find?® a discussion of the
N-dimensional case in terms of unnormalized confluent
hypergeometric functions.

In this paper we will first give a complete normalized
solution of the general N-dimensional hydrogen atom,
which reduces to the standard?!-23 three-dimensional atom
when the parameter V is set equal to 3. Next, in Sec. I1] we
will use our N-dimensional results to discuss what one-
dimensional potential is the appropriate specialization. This
being done, we use known quantum-mechanical principles
to predict the exact closed-form normalized bound-state
solutions. This prediction is verified explicitly. In Sec. IV
we make observations on the effects of the number of di-
mensions on the generalized eigenenergies and ground-state
energies, on the raising and lowering operators of the radial
eigenfunctions, and on the radial momentum operators.
Finally we show that in N-space dimensions particular
changes of variables map the relativistic pi-mesic atom into
the nonrelativistic hydrogen atom, so that the solutions
follow immediately.

Before continuing, however, we wish to make the physi-
cally important point that, although the hydrogen atom in
N-space dimensions is standardly defined by the poten-
tial

—e¢p = V(r) = —e?/r, (1.1)
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(1.2)

L 2
r2= E X7,
i=1

Equation (1.1) is not the static potential which would cor-
respond to the solution of Maxwell’s equations in N-space
dimensions. Equation (1.1) is only the solution of Poisson’s
equation

V24 = —dmp (1.3)

in three-space dimensions. In general, the solution is

_ jeonstr2=N, N =2,

= 1.4
constIn(r/rg), N = 2. (1.4)

Vir)

For N = 2 the reader should recognize Eq. (1.4) as the
electrostatic solution for an infinite line charge in three-
space dimensions. For N = 1, the solution (1.4) is an infi-
nitely rising confining potential. This potential is one of the
reasons for modern field-theoretic interest in the electro-
dynamics of one-space and one-time dimensions. It provides
insight into the problem of quark confinement.

II. N-DIMENSIONAL HYDROGEN ATOM

The Schrédinger equation for the N-dimensional hy-
drogen atom is (Ze2 — e2)

v Dy -s,

2m

2.1

‘ N
r2= Y x? 2.2)
i=1
The first step is to change to spherical coordinates in N
dimensions. As in three dimensions, this allows a factori-
zation of the problem into a wave function which is the
product of a radial wave function R, (r), which will turn
out to be labeled by the two quantum numbers » and /, and
a spherical harmonic Y labeled by the quantum numbers
Y(Il,lz, . lN_z, lN_1 = l), = |m| for N = 2. These
spherical harmonics are well known and studied. They are
given in terms of the coordinates 8;, | <i < N — 1, defined
by
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x1 = rcosfsinfy « sinfy—;,
x5 = rsinflsinfly «- sinfy -1,
x3 = rcosflysinfs « sinfy-,
(2.3)

xj = r cosb;—; sinf; «sinfy—,

Xn—1 = rcosfy—zsinfy_1,
xy =rcosfy_y,

for N=223,...,and x; = rcosf, x, = rsinf for N = 2. We
refer the reader to Louck?26:27 for the appropriate discus-
sion. The main point for us is that with these variables,

d2 (N-1)d
VIR, Y=Y|-—+—-—-2—
! dr? + rdr
I+ N-=-2
—(—2—) Ru(r). (24)
Making with foresight the changes of variables
E = —=6o/k?(n), o= me*/2h2, (2.5)
p = rfrok, ro = h2%/2me?, (2.6)

Eq. (2.1) thus becomes
d_2+(N—1)g_l(1+N—2)
dp? p P p?
+ k - —l-)R,,1 =0. (2.7)
p 4

For N = 3 our equation reduces to the radial equation for
the standard hydrogen atom. Motivated by this, we go
through a procedure which is similar to that for the standard
solution of the hydrogen atom.

Consider the p — o limit of (2.7). In this case one has

d? 1
— - = (. 2.8
The solution of (2.8) which is finite at p — o« is
lim R, = N(nl)exp (—p/2), (2.9)

p—r®

where N {(n,!) is the normalization constant.
Equation (2.9) leads us to propose the trial solution

Ry = N(nl) exp(—p/2) g(p). (2.10)
Putting this back into (2.7) yields an equation for g of

N-—-1
//+ _1 7
o[
+(k—[(N—1)/2]_l(l+]\i—2) .
P P

where the prime refers to the derivative with respect to p.
Because exponential behavior has already been taken out,
one hopes that the solution for g is a polynomial. Indeed,
if one considers the special value for k of

=0, (2.11)

k—[(N=1)/2]=]| (2.12)
then a solution to (2.11)is
glk=(N—-1)/2+1)=p'. (2.13)
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One is thus led to take the further trial solution
g=p'h, (2.14)
which, when put into (2.11), gives the equation for 4,

ph” + [2I+ N — 1) — plk’
+[k=—(N=1)/2-1JR=0. (2.15)

If the quantity [k — (VN — 1)/2 — I] which multiplies 4 in
(2.15) is equal to a non-negative integer, then a finite
polynomial solution is allowed. (This, when combined with
the rest of R,,, yields a normalizable solution.) In particular,
this solution to (2.15) is the generalized Laguerre polyno-
mial LR (p).

Please observe that our Laguerre polynomials are defined
as

L)1) sto (: T_J“) %’X (2.16)
— (_l)al‘g-*-a(t)
= W (2.17)

[« a non-negative integer in (2.17)]. The L{ are mathe-
matically more useful than the Ly, often used in Coulomb
wave functions, and are the ones discussed in comprehensive
books on the functions of mathematical physics28:2 as well
as in tables of integrals.30

Changing to the commonly used principle quantum
number n = 1,2,3, . . ., the condition [k(n) = (1/2) N+ 1/2
—1[}=0,1,2, ..., used with the limiting case /,x = n —
coming from Eqgs. (2.12) and (2.13), gives the following
allowed values for # and /:

n=k—(1/2)N+3/2=123,..., (2.18a)
/1=012,..,n—1. (2.18b)
Combining everything, one finally has
Ru(p) = N (nl) exp(—p/2) p'LEN(p),

(2.19)

= 4 (2.20)

P o+ (N =3)/2]" '
E,= —bo (2.21)

[n+ (N =13)/2]*

Since the radial volume element in N-dimensional space is
r¥=1dr, one can obtain

® 2]-1/2

N(nl) = [j; dr rN=1e=ep2l (LN (p))
— 3\l-~/2
= lr() (n +——N2 3) /

(L an-2) 72

(2.22)

where the generalized Coulomb-like integral J ) for non-
integer c and 8 has been derived elsewhere3! as

1= et di

_Metn+) & G T—k=-p)
" Tt &V TERoB
T(a+k+1+5H) 1

Tk+ )T (n—k+1)
(2.23)

Tla+k+1)
Re(a+3+1)>0.
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J!)-has only two nonzero contributions (for k = n — 1 and
n) in the sum (2.23) because of the gamma functions of
negative integers. The result is

(1) - (_O‘_w M+ a+1 2.24
Jina Tt D (2n+a+ 1), (2.24)
meaning the normalization constant A (n,/) is
1
NOD = V=32
- 1/2
INCEE)) / (2.25)

B+ W=3)/2 T+ I+ N=2)

III. ONE-DIMENSIONAL HYDROGEN ATOM

The one-dimensional hydrogen atom has been involved
in an interesting controversy.'4-!'7 From our point of view
we will be able to discuss an appropriate one-dimensional
specialization in closed form, making a connection to the
previous literature.

From the eigenenergy equation (2.21), one would naively
guess that a specialization to one dimension would have the
same eigenspectra as the three-dimensional atom, but with
the three-dimensional ground state disappearing since it
would be infinitely bound. [That is, in Eq. (2.21), (n = 1)
= 1,2,...]. Indeed, taking the potential

—e2/x, x>0,
+ o, x<0,

this turns out to be the case. Further, by known quantum-
mechanical principles®2-3 one can give the functional forms
of the wave functions even before they are derived, as we
now do.

If one starts with a symmetric one-dimensional potential,
V(x) = V(—x), the eigensolutions y,,(x) are even for m

V(x) = (3.1)

= (0,2,..., and odd for m = 1,3,5,.... The differential.

equation satisfied by these one-dimensional ¥, is the same
differential equation satisfied by the three-dimensional
wave functions x,, /=o(r), where

Xm,1=0(r) = rRm,/=0(r)~ (32)

However, since on physical grounds R,, ;=¢ must have a
continuous first derivative at the origin, » = 0, only the odd
solutions x,,, /=o(#) are allowed. Thus, the odd solutions of
the one-dimensional symmetric problem correspond to all
the allowed radial solutions of the three-dimensional
problem for / = 0.

Given the above, if we now destroy the symmetry of the
one-dimensional potential by putting in an infinite potential
barrier at the origin, the effect is to rule out the even ¥, and
allow only the odd y,,,. Then, al/l the allowed one-dimen-
sional solutions correspond to a// the allowed radial solu-
tions of the three-dimensional problem for / = 0.

The above paragraph exactly describes the situation for
the one-dimensional potential of Eq. (3.1). Thus, by taking
the three-dimensional / = 0 hydrogen-atom wave functions
of (2.19) and then using (3.2) withn = (m + 1)/2 =
1,2,3,. . ., one obtains the solutions to the one-dimensional
hydrogen atom as,

Vn(x) = Nue=?2pL (p), n=123,..., (3.3)
p = x/(nro), (3.4)
E,= —&o/n. (3.5)
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The lost!317 “infinitely bound state” is the m = 0 even
ground state of the symmetric one-dimensional problem.

Now that we have predicted the solution (3.3), let us
verify it. As in Sec. Il we attempt the trial solution

Yn(x) = Nue=?2g(p) = Nne?2ph(p), (3.6)
p = x/[k(n)xo). (3.7

Putting this into the one-dimensional Schrédinger equation,
the differential equations for g and A are

0=pg” — pg’ +keg (3.8)
0=ph” + (2 - p)h' + (k — 1)h. (3.9)

Equation (3.8) is Kummar’s equation and (3.9) is once more
the Laguerre equation. One can obtain a finite polynomial
solution to (3.9) if £ — 1 is a nonnegative integer 0,1,2,. . ..
Then the solution is L2 ,(p) = L2 (p), n = 1,2,3,. . .. Note
that since the factor multiplying 4 in Eq. (3.9) is k — 1 in-
stead of k, k = n instead of differing by unity from n.
Technically this is where the “infinitely bound ground state”
is avoided.

Summarizing, Egs. (3.3)-(3.5) are the correct wave
functions and eigenspectra for the potential (3.1), with the
normalization constants being

-Nn= ("On*]}zl—)l,l)_l/2 .
(3.10)

= (2!131'0)—]/2.
The “physical” reason we prefer the potential (3.1) to
V(x) = —e?/|x]| (3.11)

is that although (3.11) yields the same eigenspectra as (3.5),
it is doubly degenerate. In higher dimensions the eigenen-
ergy degeneracies are due to the angular coordinates instead
of the radial one. Therefore, since there is no radial coor-
dinate in one dimension, we feel a nondegenerate eigen-
spectra is more “physical.” However, the above must cer-
tainly be taken with a giant grain of salt, since our “physi-
cal” system is one dimensional. Thus, the choice between
(3.1) and (3.11) is somewhat a matter of opinion.

In any event, it is interesting to compare the eigenfunc-
tions for'4 (3.11) to our Eq. (3.3) for ¥(x) of (3.1). For x
> 0 they are the same. For x < 0 the p becomes |p| in the
exponential and Laguerre polynomials. However the factor
p remains p for the odd wave functions but becomes |p| for
the even wave functions.

IV. PROPERTIES OF THE SOLUTIONS

There are a number of properties which are interesting
to look at. The first is the monotonic increase of the nth
eigenenergy with increasing dimension N. From (2.21),

AE, = Ex(N) ~ E,(N — 1)
=é,0( [n+ (1/2)N —7/4] )
[n+ (1/2)N = 2)2 [n + (1/2)N = 3/2)2)
(4.1)

In particular, this means that the added ground-state energy
per degree of freedom is

(4.2)

AE1=4(§0( N -3 )

(N =2)%N-1)?

A next property to consider is the raising and lowering
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operators to adjacent eigenstates. Such calculations have
been discussed in great detail by Infeld and Hull® in their
classic “factorization-method” paper, even though at times
their factorizations turn out not to be the physically useful
ones.3334 For the Coulomb potential, Infeld and Hull fo-
cused on what remains to this day a fundamental problem
in the # raising and lowering operators. Even though one
can use the raising and lowering operators for the gener-
alized Laguerre polynomials to obtain what appear to be
the raising and lowering operators for the wave functions
R,;(p), what is devastating, but often unnoticed, is that p
depends on # as given in (2.20). Thus, applying a raising
operator to Ry(p) will yield

A Rnl(pn) = nIRn+1 1(pn) # CuRuv11 (Pr+1),
(4.3)
r
Pn=-—"". (44)
ron

Thus, one has to apply a “shift operator” to change p, to
pa+1. Effectively, the “shift operator” really means
changing p, to p,+ by hand. This is a deep problem, whose
origin has been discussed by Aebersold and Biedenharn.®

Contrariwise, one can still discuss the / raising and low-
ering operators since p does not depend on /. However,
partially because the eigenvalues of L? are not evenly spaced
but /(/ + N — 2), these operators are / (and n) dependent.
This is contrary to the most usually discussed raising and
lowering operators, those for the one-dimensional harmonic
oscillator and L. in three dimensions. There the eigenvalues
are evenly spaced, and a*(a) for the harmonic oscillator
and L do not depend upon n or m, respectively.

Using the relationships

(n+ D(n+ L) =

X L)+ (a- l)y( (“)(y)) (4.5)

[a(a — 1) = y(a + n)]

PLEI) = —nLE ) <a+1>( wm) (4.6)

which can be obtained from the standard recurrence rela-
tions for the generalized Laguerre polynomials,?® the reader
can directly verify that with

__[¥N=2 d 1{2n+N-3
Al ‘[ dp 2(21+N——3)]’ (47
/ d 1[2n+N-=3
Fels-L - E—— 48
Al L dp Jﬂ+N—l” (4.8)
one has
_ _[(n=Drn+1+N=3)]V?

AIRn,/"‘ (21+N—3) Rn.l—ly (49)
pr [(n=1=Dn+1+N=2)]"?
Rn (2[+N—1) Rn,/+|-

(4.10)

Further, and ultimately due to the unequal level spacing,
the A# are not Hermitian conjugates of each other. (47)*
can be calculated easily by using the technique discussed
by Dirac3? to obtain

dT_ Nﬂif
&) =(£xa) -

_WN=1) _d
r dr’

N od
X

\|><

4.11)
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so that
_ I-1 d 1{2n+N-3
A Pt — - = -
(4 {p dp 2(21+N 3)] (4.12)
I+N—-1_d 1{2m+N-3
ANVt =|——— 4 — o =— = -
(A7) [ p dp (21+N—1)]

(4.13)

Equation (4.11) means the radial momentum operator is

d N-
Pr= (dr + 2r )
consistent with other discussions of radial operators.36-37
For V = 3, the above raising and lowering operators have
already been used to discuss the “natural quantum opera-
tors” which yield the radial coherent states of the three-
dimensional hydrogen atom.3438 In the future a more de-
tailed discussion will appear on the coherent states of the
hydrogen atom. For now we simply observe that [4; +
(AN £ [AF + (A47)1] are proportional to the “natural
quantum operators”

(4.14)

_ me?
AR+ (N=3)21 11+ (V= 1)/21)
(4.15)
P=p, (4.16)

We call these the “natural quantum operators” because if
we associate A2(/ + N/2 — 3/2)(/ + N/2 — 1/2) and p,
with the classical angular momentum squared and the
classical radial momentum, respectively, then the corre-
sponding classical variables3® are those objects which vary
as sin [#(¢)] and cos [0(2)], 8(¢) the angular velocity in the
exact solution of the Kepler problem.3?

V. RELATIVISTIC PI-MESIC ATOM

The treatment of the relativistic pi-mesic atom using
the Klein-Gordon (KG) equation is usually geared to
finding the energy levels,*-42 and not the normalized wave
functions. Historically it was the fact that the KG energy
levels did not agree with the Sommerfeld formula for the
hydrogen atom that necessitated the search which culmi-
nated in the Dirac equation.

Ironically, although the Klein-Gordon equation was the
first relativistic quantum-mechanical wave equation, it was
only recently?3#4 that the predictions for the energy levels
of the pi atom have been experimentally verified. This was
because to prevent the electromagnetic splittings from being
overwhelmed by strong interaction effects due to the nu-
cleus, one needs to observe transitions from large # and /
states which are relatively far from the nucleus. It is ex-
perimentally difficult to obtain mesic atoms in large n — /
states.

However, what we are concerned with here is that, with
well known*? changes of variables, the relativistic pi-mesic
atom problem can be mapped into the hydrogen atom
problem in three- or arbitrary N-space dimensions. Thus,
functionally the wave equation solutions are identical. This
last point is not well known.

The relativistic pi-mesic atom in N-space dimensions,
treated with the Klein-Gordon equation, is described as
(Ze?2 — e2)
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(E + e¥/r)2 = (—c2h?V? + m2c4)Y. (5.1)
By defining
= I 2 = ____ili_ 5.2
p ao’ a 4(m2c* — E?)’ (5.2)
2Ee? ,_ et
= = 5.3
c?hlay’ h2c?’ (5.3)
Eq. (5.1) becomes
d2 N-1d [l(+N-2)—v7
0=|5+5"—"—- .
dp? p dp P
LN 54
4 0

Comparing this to Eq. (2.7) one sees that it is the same
except for k = (n — N/2 + 3/2) being replaced by Aand the
numerator of the p~2 term having —y? added to it. The
same considerations which led to the trial function defined
by (2.10) and (2.14) now lead to the trial function

R=N(\s)e= "2 psh(p), (5.5)

where s will be similar to /, but modified from it by the —v?
term. Putting (5.5) into (5.4) one will obtain the equa-
tion

0=ph”+[2s+ N—1)—p]h’

+ A= (1/2) (N = 1) =s]h, (5.6)

with the normalizable solution

h = L& -0, (5.7)
i
s=-(N=2+ [(H 321—2)2 - 72]”2 (58)
and

A=(1/DWN-D)=s=n"=n—=1-1=0,12,...
(5.9)

But the above is a solution with the same functional form
as (2.19). Therefore the normalization constants are
functionally the same, yielding the final solutions

1 _
R(p) = N exp (—Ep)p*Lif;‘T-Nu Mp).  (5.10)

N = 1 I'(n—10 1/2
(ao)™2\2MT[s+ A+ (N - 1)/2]

_ (5.11)
where in (5.10) and (5.11) we have inserted the condition
(5.9).

The energy levels come from Eqgs. (5.3), (5.8), and (5.9),
giving

v? 2)’/2} (5.12)

E=me |1+ e e A T

The nonrelativistic limit is

6o _ 6o
[n+ (N =232 [n+(N=23)/2]

E =~ me?—

X x !
[n+(N=3)/2]U+(1/2)N -1
_ 3
4[n + (N —3)/2]
Finally, we note that because the Dirac equation inher-
ently involves a mixture of two solutions, it is not possible
to write out the eigensolutions of the Dirac equation in terms

of single generalized Laguerre polynomials. Rather, they
are mixtures of these polynomials.*?
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