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Cancellation of internal forces

John W. McClain
Physics Department, Yarmouk University, Irbid, Jordan
(Received 28 November 1978; accepted 4 January 1979)

Most readers will be familiar with the parable of the
horse and the cart, which focuses attention on an important
feature of Newton’s third law. The horse pulls forward and
the cart pulls equally hard backward, and yet the horse and
the cart can accelerate. The elucidation of the “paradox™
emphasizes that the two action-reaction forces are exerted
on different bodies and that therefore there is no question
of their cancelling one another.

Thoughtful students who have grasped the meaning of
the horse-and-cart parable cannot fail to be puzzled by the
treatment given in some textbooks of the momentum of a
system of particles.

Defining the momentum P of the system as the sum of
the momenta p; of the constituent particles and differen-
tiating with respect to time, one obtains

dP _ odp; _
dt _%: dt ?f" ()

where f; is the resultant of all forces, internal and external,
acting on the jth particle. The statement is then made that,
by Newton’s third law, the internal forces cancel in pairs,
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so that Eq. (1) becomes

P

g'd_t = ? fjex = Fex, (2)
where f; cx is the resultant of the external forces acting on
the jth particle and Fy is the resultant of all the external
forces acting on the system.

If it is wrong to suppose that the force exerted by the
horse on the cart cancels the force exerted by the cart on the
horse, then it is equally wrong to suppose that the force
exerted by the ith particle on the jth cancels the force ex-
erted by the jth particle on the ith.

There is no need to resort to an erroneous application of
Newton’s third law in order to proceed from Eq. (1) to (2).
It is easy to show that if two particles exert equal and op-
posite forces on each other, then the resulting motions of
the particles are such that the motion of their center of mass
is unchanged. The one obtains Eq. (2), not by incorrectly
invoking a cancellation of the internal forces, but simply by
referring to the fact that the internal forces are irrelevant
to the motion of the center of mass of the system.

Physics Department, Towson State University, Baltimore, Maryland 21204

(Received 22 November 1978; accepted 12 June 1979)

The purpose of this note is to solve the Schrodinger
equation for a hydrogen atom in two dimensions. We believe
that this will help an average undergraduate physics major
to fill the gap between solving one-dimensional Schrédinger
equations and that of the hydrogen atom in three dimen-
sions.

The time-independent Schrédinger equation for the
two-dimensional hydrogen atom is

(=h2/2u) V2V + V¥ = EV, (N
where
92 10 1 92
2 =4 -—+ ==
v or2 ror r2of

in two-dimensional polar coordinates, u is the reduced mass
of the electron-proton system, V = —ke2/r, E is the energy
eigenvalue, and ¥ is the wave function to be found.

Using the method of separation of variables, we let
W (r,0) = R(r)O(0). Equation (1) becomes

r2d?R  r dR | 2ur? _—14d%0

Rar TRa Pt EN=%
Since the left-hand side is a function only of r and the
right-hand side is a function only of 8, both must be equal
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to a constant, say m?. We have
1 d20

. §

BCYTE

The solution of this equation is O = ce™?, where m = 0, %1,
%2, ... because © and dO/df must be continuous.
We also have

d’R  1dR _(2p

dr?  rdr \h?
Let &2 = —2uE /A2 Then since R(r) — e~ 2" asr — », we
are led to try R(r) = e~*"F(r). Substituting into Eq.
(2),

2 2
dF(r)+ —20£+l 51£+ _a_ﬁ_m_ @:0;
dr? r] dr r| r

where 8 = —2uke?/h2. Letting p = 2ar and S(p) = F(r),
the above equation becomes

ds(p) (_1 l)d_S (_l_f_i_m_2)1 -
o + +p dp+ . pS(p) 0(.3)

Let S(p) = p*L(p); s = const; L(0) £ O and finite. Sub-
stituting into Eq. (3):

(Vir)-E] + rrn_22) R=0. (2)
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d2L ) dL
= = — + p—
pdp2+(2sp p*+p) dp

+(s(s—l)-—sp+s ————— mz)L=O.
2a

Looking at the behavior for p — 0, we have s(s — 1) + 1 —
m? =0, i.e.,s = +|m|. But in order for S(p) to converge
as p — 0, we choose s = +|m| and hence

2

d2L dL
S+ @ml+1-p) 2=
pe (2|m| p)dp

B8

+ (-—|ml —%—E)L(p) =0, (4)

The above equation is of the same form as the associated
Laguerre equation which is

) d2Li(p) dLi(p)
dp? dp
+ (K = j)Lk(p) = 0. (5)
This equation can be solved by power series and this series
must terminate for reasons similar to those encountered in

the harmonic oscillators. The solutions of Eq (5) are the
associated Laguerre polynomials of degree K — j and order

J:

+(G+1-0p)

d/
—— Li(p),

where K and j are zero or positive integers, and where
Lx(p), the Laguerre polynomials, of degree K, are given
by

Li(p)

dK
Lg(p) = e* UpK pke=».

Comparison of Eq. (4) with (5) indicates that the solutions
L(p) for Eq. (3) are given by the associated Laguerre
polynomial Lx(p) if j = 2|m|,and K = |m| — 1/2 — 3/2c.
Since K must be zero or a positive integer, then it follows
that (—1/2 — 8/2a) must also be zero or a positive integer
which we will now define as s, the principal quantum
number: n = —1/2 — B/2a, hence a2 = 32/(2n + 1).
Substituting the value of & and § into a2 = ~2uE/h, one
finds that E, = — Eo/(2n+ 1)2, wheren =0, 1,2,3,4. ..
and Eg = — 2ukZed/h2 = —54.4ev.

It is interesting to consider the degeneracy of E,,. Since
nis equal to K — |m| and K and |m| are zero or positive
integers such that 2|m| = j < K, each E,, is (n + 1) fold
degenerate:n=0;K=0,m=0:n=1;K=1,m=0,k =
2m=1n=2;K=2m=0,K=3m=1,K=4m=
2:n=3;K=3m=0,K=4m=1,K=5m=2K=
6, m = 3. The quantum number K is always > n. While in
the case of three-dimensional (3D) hydrogen atoms the
degeneracy of a state of given n is

I=n—1
> (241) =n2
=0

where /, the counterpart of K, is < n — 1. The degeneracy
of the two-dimensional (2D) hydrogen atom is the same as
the 2D simple harmonic oscillator,! but the degeneracies
for 3D hydrogen atom and 3D simple harmonic oscillator
are different.?

!See, for example, Robert E. White, Basic Quantum Mechanics
(McGraw-Hill, New York, 1966), p. 91.

2See, for example, Robert H. Dicke and James P. Wittke, Introduction
to Quantum Mechanics (Addison-Wesley, Reading, MA, 1960), p.
167.

Reply to Professor Walstad’s “The equivalence principle”

H. C. Ohanian

Department of Physics, Union College, Schenectady, New York 12308

(Received 20 October 1978; accepted 20 October 1978)

In my paper I presented a few Gedankenexperimente
(some admittedly rather idealized, but others quite realistic)
which detect the tidal forces within an arbitrarily small
region and thereby demonstrate violations of the conven-
tional formulation of the Principle of Equivalence. It is
Walstad’s contention that these violations should be ignored
because they are an abuse of the Principle of Equivalence
and because they are a pedagogical inconvenience. In this
I perceive some paraliel to the attitude expressed by the
famous Cremonini of the University of Padua who refused
to look through the telescope and chose to ignore Galileo’s
discovery of “imperfections” of the Sun and the Moon. Of
course, for most purposes an almost perfectly round and
smooth Sun is a very useful approximation—but for the
purposes of some solar astronomers the deviations are of
much greater interest. Likewise, the almost perfect elimi-
nation of gravity by free fall is a very useful approxima-
tion—but this must not blind us to the importance of re-
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sidual effects.

Furthermore, it is Walstad’s contention that my count-
erexamples rest on an unrealistic and contrived experi-
mental procedure. In Walstad’s view, an experimenter
seeking to test the Principle of Equivalence should first
design and build the apparatus and then hand it over to
Walstad who, naturally, will perform measurements only
in those places where the tidal force is so weak that its de-
tection is bound to fail. No sane experimenter would agree
to such a farcical procedure. The sound and realistic pro-
cedure is quite the reverse: Walstad must first tell the ex-
perimenter at what place the tidal force is to be measured,
and the experimenter will then try to design an apparatus
that does the job. My claim, substantiated by detailed ex-
amples, is that given any prescribed tidal field, one can al-
ways design a sufficiently sensitive apparatus to detect this
field, even within an arbitrarily small region, provided only
that classical physics remains applicable.
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