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The relativistic hydrogen atom: A simple solution

Paul R. Auvil and Laurie M. Brown

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60201

(Received 16 November 1976)

In his well-known textbook on quantum mechanics,!
Schiff shows that the relativistic Schrédinger equation, also
known as the Klein-Gordon (KG) equation, can be reduced,
in the case of the Coulomb potential, to a form nearly
identical to that of the nonrelativistic (NR) Schrédinger
equation for the same potential. As a result the eigenfunc-
tions and eigenvalues of the bound states can be inferred
immediately from the known solutions of the NR problem.
Here we show that an analogous procedure leads to the
solutions of the Dirac equation for the hydrogen atom. The
standard solution of the problem is considerably more
complicated.2:3

We proceed as follows: After reminding the reader of
Schiff’s treatment of the relativistic bound-state Coulomb
problem for a spin-zero particle, we show how the Dirac
equation can be put into a form analogous to the KG
equation. Separating in spherical coordinates (for a central
potential), the angular eigenvalue problem is solved, the
eigenfunctions being two component spinors. The radial
eigenfunctions and energy for the hydrogen atom are im-
mediately inferred from the solutions of the NR Schré-
dinger equation. Each eigenfunction of the energy and
angular momentum depends upon only a single radial
function. Our solutions are not parity eigenstates; never-
theless they can be used directly for calculating atomic
properties. An Appendix discusses relevant properties of
the associated Laguerre functions and of the angular ei-
genfunctions; it shows the relation of our solutions to the
standard (parity eigenstate) solutions.

To show the simplicity of Schiff’s argument (and to es-
tablish the notation), we review his treatment of the KG
equation. With natural units (A = ¢ = 1), the KG equation
for a negative charge in an electromagnetic field is

(w#m, — m?)U(r) = 0, (1
where m, = id/dx* + eA,. Specializing to the Coulomb

case where Ag = +Ze/r and A = 0, Eq. (1) simplifies (for
stationary states) to

(=V2+ m?)U(r) = (E + v/r)2U(r), ()

where v = Ze?. In spherical coordinates this becomes

14 0 A1 L2—42 ]
——p2 + (-1 -
[p2 dp " dp <p 4 p? ) v =0. 0
where A = 2Ey/a and p = ar, with a = 2(m2 — E2)1/2,
Note that E = m/(1 + ¥2/A\2)1/2, L2 is the square of the
usual angular momentum operator whose eigenstates are
Y1 (6,¢) with eigenvalues /(I + 1). Thus, introducing U(r)
= R(r)Y},,, we have
1 d ( 2dR) (A 1 I+ 1)—72)
2 (2 )+ (22T D)"Y VR0 4
ptdp dp p 4 p? @
Except for the —y2/p? term, Eq. (4) is identical in form
to the NR Schrodinger equation. (Of course, in that case
E = —m~?/2X2 and is the binding energy.) Hence, if we
define s = A5[(2] + 1)2 — 442]1/2 — 1, Eq. (4) can be
written
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1d/ ,dR A1 os(s+1)
——(p2=)+ <—————————)R=0, 5

p*dp <p dp) p 4 p? ®)
and is identical in form to the NR Schrodinger equation.
By comparison with the latter, the solutions of Eq. (5)
are

R(p) = pse=?/2 LI (p). (6)

The eigenvalue spectrum A =n — [+ s, wheren =1+ 1,
I+2,..-(ie,A=5+ 1,5 +2,--.), is obtained by re-
quiring R(p) to be well behaved at p = 0 and p = «, With
these values, (A — s — 1) takes on integer values and the
Laguerre functions L3**! | are polynomials in p of order A
— s — 1. A discussion of their properties can be found in the

Appendix. Summarizing, we have found
Enr=m/[1+v%(n—1+5)2'/2, (N
with
Unim(r) = (ar)s e=e"2 L34 (ar), (8)

forn=1,23,---;1=0,1,--+(n —1). These results were
all obtained by direct comparison with the NR Schrodinger
case.

To perform an analogous reduction of the Dirac equa-
tion

(Yumt —m)y =0, %)

we introduce projection operators P; = (15)(1 + vs) and
Py = ('h)(1 — vs), with 4% = 1. The operators obey P} =
Py, P3 = P, P\P, = P,P| = 0, and they satisfy P;y* =
v*P,. Applying P, to Eq. (9) and defining

‘l/l Ele» ¢2=P2¢’ (10)
we get
V2= m~IPyy,a) = m~ly, oy, (11)
Since Py + P, =1,
Y=y + 2= m (vt + mY. (12)

Given ¢, one can find ¥, using Eq. (10); given ¢, one can
recover ¥ by using Eq. (12). Evidently, using Egs. (9) and
(12), ¢, satisfies the equation

(y,m” = m)('Yu"r“ +m)y;, =0. (13)

In the standard representation (using 2 X 2 block matrix
notation), we have

- (). n- L ()
»=\ro/ T'T2\11)
so that ¢ takes the form

0= ()

where V is a two-component vector. Writing out Eq. (13)
for stationary states, we find

(14)
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A1 L2=42—jyg-)
(-j- BT o

where A and p are defined just as after Eq. (3). We have
used the standard representation in which

0=<1 0) =<00’>
T No-1)""" =00

and the {o;} are the usual Pauli matrices.* Evidently, we
have omitted the unit matrix in terms such as A/p, etc.
Equation (15) bears a striking resemblance to Eq. (3) ex-
cept for the nondiagonal piece iyo-p/p2.

Equation (15) is easily diagonalized in terms of the usual
angular functions ¢;,, which are eigenstates of J2, J, L2,
and S2. (J =L + o/2). These two-component vectors have
s =1hand ] = j ¥ 1/, (and the parity of /). We discuss the
&y in the Appendix, but for the present discussion we shall
need only the property

o- b‘me = ‘pj:‘Fm- (16)

This follows from the fact that ¢+ is a pseudoscalar oper-
ator; it commutes® with J, and (g-p)2 = I. Hence, o+p
changes parity but not j and m.

We now introduce

G]:'km = ‘pj#m + xi‘me’ (17)
with x4 = (£i/y)[(j + ') — k)] where k = [(j + '/)? —
¥2]1/2, 1t is easy to check that these functions satisfy

(L2 =42 —iyo-p) Gj = S«(S+ + 1)Gj,,  (18)

with S, = (k — '5) = '5. Note that x . are of order 7 so that
the G, are approxzmate eigenstates of parity. Writing
V(p,0 ,(p) V*(p)G,m(O,w), where V* (p) are ordinary
functions, Eq. (15) becomes

1 d < 2 dV*)

S5 \P

p2dp dp
P (AoloSaSer)

p 4 p?
By comparison with Eq. (5), we may now immediately

write

)V* (0) = 0. (19)

VE(p) = pSe=#2 LI3%EL, (p). (20)

Again A mustbe Sy + 1, S + 2, - - tosatisfy the boundary
conditions. If we introduce the usual principal quantum
number, n = X\ + (j + 15) — k, then

Eyj=mf{l+~yY[n+k—(G+ R (21
V+(p) = p*=le=#2 LI ), (22)
V=(p) = pke=o/2 Lgl:{j+l/2)—la (23)

forn=123,---;j=1%,3/2, ..., n— 15, except that
V_(p) does not exist for the maximum j value.

In conclusion, we have found that the hydrogen atom
states of energy E,; are, for j <n — 1,

Viim = Viai(pnj)Giru(8,0). (24)
with

pnj = 2myr((n+ k = 1)2 + y2]7172, (25)
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For j = n — 1/, there is only one state, namely tl/,fjm, as given
by Eq. (24).

APPENDIX

In this Appendix we discuss a few details of our presen-
tation which are useful for calculative purposes but not
essential to the mainstream of the derivation.

A. Definition and properties of the Laguerre equation
(Ref. 6)

In the Schrodinger, Klein-Gordon, and Dirac cases the
radial wave equation reduces to the form

1dy/ ., df a(a + 1)
z2dz <Z dz) < 4+ )f 0. (aD
With the substitution f(z) = z7 e~#2 F(z), we obtain
d’F  (2a+1) \dF —-a—1 _
d22+( z )dz ( z >F_O'
(A2)

This is the well-known special case of the confluent hyper-
geometric equation that is called the Laguerre equation. It
is usually written

d2Le <a +1 ) dL®

~_—n
+
dz? dz
where L5(z) is the notation used for the regular solutions.
These are polynomials for integer values of » and for all
values of a. They are given by

o F(n+a+1) (=2)"
b = e T —m+ DM@+ m ¥ 1) Tm + 1)
(A4)

+ - L"‘ =0, (A3)

z

for example, L§ =1, Lf = a+ 1 — z, etc.

B. Definition and properties of the spinor spherical
harmonics

We wish to construct eigenstates of J2, J,, L2, and S2.
In our representation, S = ¢/2 and L is the usual differential
operator in ordinary three-dimensional space. The eigen-
functions of S2 and S, are the spinors

= (o) - (1)
X1/2,1/2 0 X1/2,—1/2 1)

where S%x) /24 = (3/4)x1/2.4 and S;X1/2.4 = 4X1/2.4- The
elgenfunctlon of L2 and L, are the usual spherical har-
monics, Y;,(6,¢), where

L2Y1,p(0,¢) = l(l + l)Yl,p and LzYI,p = le,p.

To construct eigenstates of J2 and J, we now couple these
eigenfunctions via the usual Clebsch-Gordon coefficients
and define
Oim = L ALphq| L iim) Y1 p(0,0)x1/24, (B1)
P4

where (+) and (—) refer to the two possibilities: j = [ £ 15,
respectively. Under the parity operation ¢}, becomes
(_l)jq:]/2 ﬁojim-

These functions are so simple that we write them out
explicitly’
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= [ (G + m)/ 211 212 m—1/2 (9,¢)], (B2)

(G = m)/21Y2Y -1 j2.m+1/2 (6,0)
o = [[(i"‘ 1= m)/2G + D]V2Yjs1/2m-1)2 (9,90)]
LG+ T+ m)2G + DIV e 2me12 B0) 1
(B2b)

The property used in the text, o-p¢i, = ¢}, can be verified
directly by using

g D= (._3_.>1/2 [YI’O
P 47I' \/§Y1,+l

C. Connection with usual solutions to the hydrogen
atom

V2 Y1

=Yi0 ] (B3)

From our results for 1, namely, that
L [VEGE
V= (V*G*)’

we can recover the usual type Dirac spinor by using Eq.
(12),i.e.,

¥E = (1/m)(yum + myyi. (C1)

For a given n value, the maximum j value has only the
(+) solution (i.e., there is no energy degeneracy) so that Eq.
(C1) will produce a multiple of the usual solution. Since for
other j values we have two solutions for each energy ei-
genvalue, this inversion does not necessarily produce solu-
tions which are parity eigenstates. In fact, because we have
introduced the G* angular functions, Eq. (C1) will not di-
rectly produce parity eigenstates. However, it is easy to form
the proper linear combinations of these two solutions in
order to recover the conventional results.

For the usual spinors of Eq. (C1), parity eigenstates are
those spinors whose upper and lower components are mul-
tiples of ¢*. If we write

¥y =¥* + ByyT, (C2)

where 3 are parity eigenstates then, by using the relation
between the G* and ¢*, one can verify that

By =i(m?>— E)V/[E(j+ 'h) + mk]  (C3)

and
B_ = —i[E(j + %) — mk]/(m2 — E})\2,  (C4)

(Note that B = 0 for j = n — 15). Both B4 and B_ are of
order + so that, for many purposes, y* may be used directly
for calculations.
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Group problem-solving sessions in PSI physics courses

Daivd P. Maloney
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(Received 23 June 1976; revised 24 August 1976)

INTRODUCTION

Much discussion of the Keller procedure or Personalized
System of Instruction (PSI) has been concerned with what
some people contend is the impersonal mechanical nature
of putting the student on his own with the textbook. People
have argued that a PSI course robs the student of a chance
for interaction with the instructor. Proponents counter by
saying that the situation is quite the contrary. They contend
that PSI allows instructors to get to know their students
better as individuals.! Even if the proponents are correct in
their contentions that PSI actually promotes better stu-
dent-instructor interaction, there is still a lack of student-
student interaction. This is a matter which the students
themselves often criticize in such courses.
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GENERAL IDEA

The modification proposed here will be developed within
the context of teaching introductory physics courses, al-
though, as will be shown later, it is by no means limited to
such courses. The modification is to institute problem ses-
sions in which the instructor works example problems re-
lating to a particular topic on a periodic basis. Since the
student already has his unit outlines to guide his study, the
instructor can choose problems to expand on text material,
clarify ideas or apply concepts from the unit. He can also
concentrate on the processes of physics rather than its
factual content. The student is required to attend each
probiem session, and the units are presented at a definite,
steady pace throughout the term with each unit examined
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