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Ladder operators for some spherically symmetric potentials in

quantum mechanics

J. D. Newmarch and R. M. Golding
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South Wales, Australia
(Received 19 May 1977; accepted 8 November 1977)

The energy levels of the free field, Coulomb potential, and the three-dimensional harmonic
oscillator are found using the Dirac operator formalism by the construction of suitable
ladder operators. The degeneracy of each level is also discussed.

INTRODUCTION

There are three basic methods of solving the simpler
problems of quantum mechanics such as the harmonic os-
cillator; the most widely used is to find a solution of
Schrodinger’s differential equation using both separation
of variables and power series solutions to ordinary differ-
ential equations. This method, although adaptable to a wide
range of problems, is cumbersome to use. The ladder op-
erator method arises when attempting to find the eigen-
values of an operator within the Dirac operator formalism
when we have no other information than a set of commu-
tation relations. It works by induction by assuming that we
have one eigenfunction and then finding a (ladder) operator
which maps it onto another eigenvector.! By examining the
relationship between this operator and others we may then
construct a difference equation in the eigenvalues. The third
technique may be described as “doing the ladder operator
method properly”—and this involves a lengthy excursion
into the realm of Lie groups.2

Of the three, the second method is certainly the simplest
and yet in no texts known to the authors is it applied to any
of the elementary problems apart from the linear oscillator
or the calculation of angular momentum. Here we extend
it to deal with the spherically symmetric potentials of the
free field, Coulomb potential, and three-dimensional iso-
tropic harmonic oscillator. In order to find the operators we
use the “factorization method” of Infield and Hull?® but
whereas they use differential operators, we shall use the
Dirac operator notation which does not depend upon any
specific realization of the operators but only on their com-
mutation relations.

FACTORIZATION OF THE HAMILTONIAN:
GENERAL CONSIDERATIONS

Since we are dealing with spherical problems we intro-
duce the radial operators

r=(x2+yp2+z9)1/2
p = (X/r)px + (y/r)py + (2/r)p:.

This choice of p differs from p, in Dirac* by the term —ih/r,
but this makes it real and self-conjugate. The operators
satisfy the commutation relation

[r.p] = ih
and in the Schrédinger representation are

p = (#/i)d/or — ikjr.

r=r;
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‘ The Hamiltonian for a spherically symmetric potential
is

H# = (1/2m)(pi + p; + p?) + V(7).
A straightforward calculation shows that .
r(pi+ p; +p) =rip2+ (xpy — ypx)?

+ (p: — 2py)* + (zpx — Xxpz)’
=r2p2+ 12

s0 we may rewrite the Hamiltonian as

H = (1/2m)[p2+ (1/r3)L2] + V(r).

We now effect a “separation of variables” by assuming that
we have a normalized eigenstate |n/) of the total angular
momentum L (n labels the energy). If we call the resultant
radial Hamiltonian H; then

H, = (1/2m){p2+ [1(+ 1)/ A8 + V(r). (1)

The most convenient way of finding an operator C; which
maps |nl) onto |n’l 4+ 1) is to require a factorization of the
Hamiltonian:

C;C[ = 2mH, + Fl
and (2)
C,Ci =2mHy + G,

where F; and G are scalars.
The vector C;C; C;|nl) may be evaluated in two different
ways to give
C[CfC/'Ill) = (sz;' + F,)C1|nl)
= (2mH;41 + G)Ci|nl)
where E7 is the energy of |n/). Rearranging, we find
Hp((Cr|nl)) = [E] + (F; — G;)/2m)(Cy|nl))

showing that C;|nl) is an eigenstate of H,4, with eigen-
value

Efty = E} + (F/ — G)/2m. (3)

If F; = G, the energy is unchanged and n’ = n. In this case
|nl) and C;|nl) are states with the same energy and we
have a degenerate system.

In a similar manner we may show that Cj|n’/ + 1) is an
eigenstate of H;. We then get

Cilnly = Nl + 1)

© 1978 American Association of Physics Teachers 658



and (4)
Ci|n'l+ 1) = ul|nl),
‘'where A} and p} are some constants. The numbers A} and
w] are complex conjugates as may be verified from
M =(nl+1|Cnl) = (nl|C}n' I+ 1)* = uf".
We now have the simple relationships from Eq. (2)
INJ|2 = 2mE} + F; = 2mE},, + G, (5)
which yield the recursion formula
[AF|2 = N2 = F1 = G-y (6)
If this ss:ries terminates at some stage with C;|n/) = 0 the
energy is
E}=—F/2m. O]
No simple rule exists as to whether the series terminates or

not. This must be determined by consideration of the po-
tential in each case.

FACTORIZATION OF THE HAMILTONIAN:
SPECIFIC CALCULATIONS

The momentum only appears quadratically in the
Hamiltonian (1). Since we wish to write the Hamiltonian
as a product of the operators C; and Cj plus a scalar, we
search for operators linear in momentum.

C=p+f(r). (8)
Recalling? that [f(r).p] = ih df/dr we find

CiCi=p? + p(f+f*) +ih df*/dr + ff*
and

C,C; =p2+ p(f+ %) + ih dffdr + f1*.
Since Hy contains no term linear in p, f+ f* = 0. This, along
with Egs. (1) and (2), gives

—ih dffdr - 2=+ 1)hYr2 4+ 2mV + F;
and
ihdffdr — 2= (I+ 1)(I + 2)h¥r2 + 2mV + G,.
The equations are readily solved:
Sry=in(l+ 1)/r+ (i2R)(F = G)r+ A
and
2mV(r) = (F; — G)*r2/ah? — (id/h)(F) — G)r
+ U+ D)(F —G)—(Fi+G)/2
— A2 =2ik(l+ 1)A/r, (9)

where A4 is some imaginary constant of integration. The
potential has to be independent of /. Thus the coefficients
of r2,r, 1,and r~! must all be independent of /. This restricts
the possible values of (F; — G;) and A in the following
manner: From the term in 1 /r we have that A is either zero
or inversely proportioned to (/ + 1), and from the term in
r2 that (F; — Gy) is a constant. The coefficient of », which
contains the product of A and (F; — G;) must now be zero

showing that one of 4 and (¥; — Gy) or both is zero. We
examine each of these three cases separately.
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Case 1: Free field
If weset 4 = (F; — G;) = 0 we have
V(r) = —(F; + G;)/Am = —F,/2m
and
Cr=p+ih(l+ 1)/r.

Since F is independent of » and V of / they must be con-
stant, which is the potential for the free field.
The Hamiltonian H; is now

H; = (12m)p2 + I(I + 1)/r2 — Fi/2m
and the energy is
E} = (nl|Hy|nl) = (1/2m){nl|p?|nl)
+ I({ + 1){nl|1/r?|nl) — F)/2m.

As p? and r=2 both have positive eigenvalues and are not
simultaneously diagonalizable, the terms (n/|p2|n/) and
(nl| 1/r?|nl) must both be greater than or equal to zero, and
cannot be simultaneously zero. Thus apart from the case
when / = 0 and p?|nl) = 0 the energy is strictly greater
than V = ~F;/2m. For the special case when / = 0 and
p?|nl) = 0 Eq. (5) shows that we only have one state as
C,;|n0) = 0, but otherwise from Eq. (7) we see that the se-
ries A}, A4, - . . can never terminate and we have infinitely
degenerate levels. From Eq. (5) we find the energy as

Ef = (1/2m)(|N]|* + F1)

but since we cannot find an expression for AJ these equations
allow a continuous distribution of energy levels.

Case 2: Coulomb potential
If we set F; = Gy but 4 > 0 we have the potential
2mV(r) = —F; — A% = 2ih(l + 1)A/r.
For this to be real and independent of /, we must have
A= —iB/(I+1) and F,;=D+ BY(l+1)?
with B and D real, giving
V(r) = —D/2m — Bh/mr.

Since the constant ~D/2m reflects the choice of zero point
for the potential, we follow the usual practice and set it
equal to zero so that

V(r) = —Bh/mr,
Fy=G;=B¥(+1)?, (10)
Ci=p+ih(l+ 1)/r—iB/(Il+1).

As F; = G, the operator C; leaves the energy unchanged
and we may take »’ of Egs. (3), (4), and (6) equal to #. In
particular, Eq. (6) becomes

NP2 = [N = B+ 1)2 ~ BYI?
with solution
_B
I+1

where X is some real constant. Substitution into Eq. (5)
makes the energy equal to KB%/2m.

[AF] = [1+K({+ 1)]/2 (11)
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To proceed further we must examine the possibie sign of
the energy. The Hamiltonian is

H; = (1/2m)[p2 + I(I + 1)h%/r?] — Bh/mr.

Now p2, r=2, and r~! all have positive eigenvalues (r is the
positive square root of x2 + y2 + z2). If B is negative—that
is, a repulsive potential—the energy must be positive,
whereas if we have an attractive potential we may have ei-
ther positive or negative energy.

If the energy is positive, then so is K, and in Eq. (11) A}
can never be zero and we have infinite degeneracy. Con-
versely, if the energy is negative the square root must vanish
when K(/yax + 1) = —1 which provides an upper bound to
1. If we identify n with (/;;.x + 1) we have the familiar re-
sult

E} = —B%/2mn?
with
Bf(n+1+ 1)(n—-1-1))2
a(l+1)

Ci|nl) = |nl+1)

where/ =0,1,2,...(n—1). Tosummarize, for a repulsive
potential we have infinitely degenerate positive energy
levels, whereas for an attractive potential we have either
infinitely degenerate positive energy, or finitely degenerate
negative energy.

Case 3: Isotropic harmonic oscillator

The last case to consider is when 4 = 0 but F; = G,.
With the usual choice of zero potential and the requirement
that V be independent of / we find

V(r) = B*r%/2mh?
F=(2l+3)B,
G = QI+ 1)B,
Ci=p+ih(l + 1)/r + iBr/h,

where B is some real constant. We note that it appears
quadratically in the potential and hence has undetermined
sign. This gives two inequivalent operators

Cr=p+ih(l+ 1)/r — iD/h

and
D, =p+ih(l+ 1)/r+iD%/h
with
Ci|nly = N}|n'l+ 1)
and

Dy|nl) = u}|n”1+ 1).

Since F; # G, none of n, n’, or n” are equal—the operators
are mapping from one energy level to another.

We first consider the equations arising from the operators
C,. Equation (3) becomes

Ely, = E7 — D*m unless C;|nl) =0 (12)
which may be extended to
El,=E}—2D%m unless Cppy|n'l+ 1) =0;

E}y=E} — 3D%m unless Ciya|n”l + 1) = 0, etc.
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The energy is clearly decreasing, but it can never be negative
as all terms in the Hamiltonian have positive eigenvalues.
Thus the series must terminate at some stage and

Et=—=F/2m= (n+ 3/2)D2,

where we have identified the maximum / value with the
energy label n. Substituting this into Eq. (12) gives

Efyi={(n 1)+ 3/2D?
showing thatn’=n— 1 or
Cinl)y = Aln—11+1).
We are now able to solve the recursion formula
INFI2 = N2 = —4B2
with A} = 0. The solution is (to within phase)
A= B[2(n — D]V

The degeneracy of the energy level E7 is easily estab-
lished by looking at the chain |nn), Cj—|jn — 1 n — 1),
C;-4Chsln—2n-2),...0r|nn), |nn—~2), |nn—4),
....so/ may take the values n,n — 2, n —4,...toOor
1.

If next we turn to the operator D; we may readily es-
tablish that

Dy|nl) = pfln+ 11+ 1)

but this series does not terminate, which means that we can
perform no useful calculations with this operator.

CONCLUSION

We have shown that the ladder operator technique may
be used to solve three important problems in quantum
mechanics. The method is simple and direct, avoiding messy
manipulation of differential equations on the one hand and
sophisticated group theoretic methods on the other. We
have tried to show which cases are soluble, but if it were
desired to solve say just the Coulomb potential problem,
rather than use the form (8) it would be easier to take C;
as

Ci=p+ Ar

with a corresponding simplification in the working. This
should bring the material within the reach of an average
student and could well supplement the angular momentum
and linear oscillator problems.

1We do not prove the existence of this first. eigenfunction, and so it is
possible to gain more solutions than actually exist. This happens with
the orbital angular momentum problem, where the ladder operator
method gives the inadmissable half-odd integer solutions as well as the
integral ones. This existence problem is more difficult [see H. A. Bu-
chdall, Am. J. Phys. 30, 829 (1962)] and will not be dealt with here.

2See, for example, W. Miller, Am. Math. Soc. Memoir No. 50 (1964), or
R. Hermann, Lie Groups for Physicists (Benjamin, New York,
1966).

3L. Infield and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).

4P. A. M. Dirac, Principles of Quantum Mechanics (Clarendon, Oxford,
1958).

J. Newmarch and R. Golding 660



