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Construction of some soluble quantal problems

Rolf G. Winter

Department of Physics, College of William and Mary, Williamsburg, Virginia 23185

(Received 26 October 1976; revised 14 December 1976)

Solutions to the Schrodinger equation for two or more simple potentials are used to
construct, in closed form, solutions for relatively complicated potentials.

It is always useful to generate new soluble problems
through the superposition of problems that have been
solved. In Newtonian mechanics, we have for conservative
forces a superposition procedure known as Bonnet’s theo-
rem, expressed as follows in Whittaker’s Dynamics!:

If a given orbit can be described in each of n given
fields of force, taken separately, the velocities at any
point P of the orbit being vy, v, . . ., U, respectively,
then the same orbit can be described in the field of
force which is obtained by superposing all these
fields, the velocity at the point P being (v,2 + v,2 +
cee Un2)1/2.

The proof is simple: At any point, in each of the sepa-
rate force fields, the normal force is given by F; = mv;%/R,
where R is the local radius of curvature. In the superposed
fields, F=F1 + Fy+ -+ F,, mv3 /R = m(@02 + v2 + -
+ v,2)/R, and therefore F = mv2/R, with the same R as for
each separate field. Conservation of energy assures that the
relation is maintained along the orbit. One should note that
most of the orbits of the separate fields and of the combined
fields have nothing in common; only a few are the same.
Both Whittaker and Routh! present illustrative problems
involving motion on an ellipse as a result of the simultaneous
action of three forces: one inverse square force from each
focus of the ellipse, and a harmonic oscillator force from the
center of the ellipse.

It is natural to ask whether anything similar exists in
quantum mechanics. Of course, there one cannot superpose
force fields and solutions in any way that parallels closely
what can be done in classical mechanics: energy eigen-
functions are determined by the behavior of the potential
energy function at all points. One can, however, make use
of the following. Suppose that one has, for different po-
tential energy functions Vi, V5, . . ., V,, real eigenfunctions
Y1, ¥, . . . ¥y that satisfy the same boundary conditions and
that all have the same energy E:

(T+ Vi) = Ey,
(T+ Vo), = Eyy,

(T+ V)n = Eyy.
Multiply the jth equation by C; and add
(T+ V)Y =Ey, (1)

where

y=Ci+ Cofa + o + Cppy, (2)
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and

= Cl Vl\bl + C2V2‘l/2 + 4 CnVn\bn
Cir+ Ca + - + Coilyy

The essence of this construction is nothing but the trivial
statement that, given ¢, one can solve Eq. (1) for V. How-
ever, this formulation suggests some useful applications.
One could call it a quantal Bonnet’s theorem: the connection
between it and the classical Bonnet’s theorem is admittedly
tenuous because the structure is entirely different, but there
is a similarity in motivation.

Consider first a three-dimensional double-well problem
constructed from two harmonic oscillator solutions. In cy-
lindrical coordinates, choose

Vi=(K/2) [(z = D*+ R,
Vy= (K/2)[(z + )2 + R2).

14 (3)

Then
(T+ Vi = Eyy,
(T+ Vo)yr = EYn
are solved by
Y1 = exp{—(a?/2)[(z — D?* + R?]},
¥2 = expl—(?/2)[(z + 1)* + R},

where

2= (mK)/2/h and E = 3h2a2/2m.
The even solution for the double-well problem,
Ve =¥1+ ¢,
is given by Eq. (2) with C; = C, = 1. The result satisfies Eq.

]

(T+ Ve)de = Ee,

for a potential energy function of the form given by Eq.
3):
Ve= (Vivn + Vaoyo)/(¥1 + ¥2)
= (E/3N[(F = N2+ p?let™
+[(C+ N2+ p2le MM + oM7), (4)

where p = aR, { = az, and A = a/. Figure 1 shows, for p =
0, the V., and ¢, obtained with A = 1.5, that is, for fair
separation of the two component wells.

The odd solution

Yo=¥1— >
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Fig. 1. The potential energy V, of Eq. (4), for A = 1.5, as a function of {
= oz along the p = 0 line joining the potential minima. The vertical scale
is marked in multiples of £/3, the energy associated with the motion along
one axis for completely separated wells. The dashed curve is the wave
function ¥.({,p = 0) in arbitrary units.

satisfies

(T+ Voo = EYo
for

Vo= (Vivr — Va)/ (Y1 — ¥2)
= (E/3IN(E — N2 + p2letrd
— [(§+ N2+ p?le~M}(etrs — =21 (5)

Figure 2 shows, for p = 0, V, and y,, also with A = 1.5.

The shapes of V, and V, are similar, but ¥, lies lower.
The method fixes E to be the same throughout, and the
interesting quantity is the location of the energy eigenvalue
with respect to the potential energy curve. Figure 3 shows
the difference between E and the minimum values of the
potentials for the even and for the odd states. One thus
obtains very easily for a three-dimensional example the
familiar observation that in double wells even states become
better bound as the distance between the wells is decreased,
while odd states become less bound. Of course the com-
parison is not really direct because V, = V, min and V, —
Vo.min, the physically meaningful potentials seen by the even
and the odd states, are different, especially near the origin.
However, the difference between V, — Vo min and V, —
V. min 18 such as to bring the two curves of Fig. 3 closer to-
gether than they would be if the even and odd states saw the
same potential. The quantity

(Ve - Ve,min) - (Vo - Vo,min)

is positive over the most important region, from about { =
—Xto ¢ = +A, and never goes negative by as much as the
difference between the two curves of Fig. 3.
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Fig. 2. The potential energy Vo({,p = 0) of Eq. (5) for A = 1.5. The
dashed curve is the wave function ¥,({,p = 0) in arbitrary units.

Variations of this problem can be worked out readily. The
wave function C1y; + Cay, with different magnitudes for
C, and C,, describes an unsymmetric double well. Three
or more wells can be described by an extension of the sums.
For example, an exact eigenstate in an infinite three-di-
mensional cubic lattice is given by

+
¢ = Z wstu
stus—®
for
V= "f Vstu‘l/stu )
stu=—cw \//
14Er

12E

E - Vmin

Fig. 3. The amount by which the energy cigenvalue lies above the minima
of potential energy, as a function of the well separation A = /. The results
are not interesting for A S 1; both ¥, and ¥, are defined so that they be-
have like V', not 2V, when the wells coalesce.
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where
Vsru = exp {=(a?/2)[(x = sD)* + (y — t])* + (z — ul)?]}
and

Wow = (K/2)[(x = sI)?+ (y — t])? + (z — ul)?].

At any point, only a few near neighbors contribute appre-
ciably to these sums because of the rapid decrease of the
Gaussians,

Another class of applications involves the superposition
of potential energy functions of different shapes. For ex-
ample, an infinite well with an adjustable variation in the
interior potential energy can be studied as follows. In
spherical coordinates,

V=0,

=w r>a

»

r<a

»

has as its lowest state
Y1 = (a/r) sin(wr/a),
Introduce a second potential

Vo= Kr2/2— W.

E = 72h2/(2ma?).

Take as ¥, the lowest eigenfunction for V, which is zero at
r = a and which has the same energy E as ;. Choose the
two constants K and W to satisfy these two conditions. The
function ¥, must then have the form Hs(ar) exp(—a?r?/2)/
ar, or

Yo = (1 — 2a%r2/3) exp(—a?r?/2),
with
E =Th%a?/2m = W, a2=(Km)!/?/h.
The requirement y»(a) = 0 is satisfied if o®> = 3 /242, K =
9h2/4ma*, so that
2= (1 — r?/a?) exp(—3r?/4a?).
Now the wave function
v =Ciyy + Co
= Cy [sin(wn)]/n + Ca(1 — 7?) exp(—379%/4),
0<9=1,
v=0, n>1,
with # = r/a, is an exact solution for
V=(CiViy1 + GV /Y
_ L 9?/4n? —21/222 + 1
1+ BF(n) ’
V=w 5>1.
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Here

B= WC]/Cz
and

; 2
Pl =) XpCr)
(1 = 7%)

is a slowly varying function that increases from unity at
= 0to 1.058 at # = 1. The potential energy V is therefore
very nearly that of a harmonic oscillator with adjustable
spring constant and with its origin shifted downward. If B
= 0, ¢ is exactly the harmonic oscillator wave function for
r < a.If B = o, the bottom of the well is flat and ¢ = .
Any possibility between these limits can be obtained from
a suitable choice of B. The energy eigenvalue is always
w2h?/2ma? with respect to the origin used in the specifi-
cation of ¥, and V5. Here also the physically important
quantity is the amount by which the energy eigenvalue
exceeds the minimum of V; that is,

21/271'2—1)
1+ B

These examples illustrate the limitations and the
strengths of the method. Since the potentials are made to
fit given wave functions, a change in state forces a change
in the potential; a set of different eigenstates in the same
potential cannot be obtained. Also, the method yields a
physically meaningful energy eigenvalue, E — ¥y, only
if the potentials that are being combined have a finite
minimum or other reference value, so that combinations of
Coulomb potentials do not provide interesting applications.
Nevertheless, it is useful to have exact solutions to a variety
of relatively complicated problems, even if one only knows
one state. Such solutions can be applied to specific problems
and are also valuable for testing the accuracy of approxi-
mations. In addition, the method has a rather general
pedagogic virtue. Introductory courses tend to be preoc-
cupied with the question, “Given the potential, what is the
wave function?” Research, however, frequently raises the
question, “Given the wave function, what is the potential?”
It is therefore desirable to call attention to elementary
procedures for getting the potential from the wave function
for systems of some complexity and physical interest.

252
E—V(0)=2"m';2 (1+

'E. N. Whittaker, A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies, 4th ed. (Cambridge U. P., London, 1937; Dover, New
York, 1944), Sec. 51. See also E. J. Routh, 4 Treatise on Dynamics of
a Particle (Cambridge U. P., London, 1898; Dover, New York, 1960),
Secs. 271-275. The theorem, although often attributed to Ossian
Bonnet, was according to Whittaker first given by Legendre in 1817.
I am not aware of any recent texts that discuss it. It is surprising that
the theorem has become an arcanum; it can be used to discuss freshman
questions such as, “What would happen if we had two suns, with one
somehow fixed at each of the foci of the ellipse on which the Earth
moves?”

Rolf G. Winter 571



