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The particle in a box is not simple

F. E. Cummings

Department of Chemistry, Atlanta University, Atlanta, Georgia 30314

(Received 25 November 1975; revised 23 February 1976)

Naive use of the position representation wave functions for a particle in either a finite or
infinite square well predicts properties of the momentum distribution in disagreement with
those calculated in the momentum representation. The discrepancy is removed by explicit
consideration of the effects of the discontinuity in the potential at the walls on position space

calculations.

I. INTRODUCTION

 The particle in a one-dimensional box is universally
presented to students as one of their first quantum-me-
chanical problems both for its mathematical simplicity and
for the fact it incorporates most of the unique features of
a quantum-mechanical system. If one transforms the po-
sition wave functions to momentum space and considers the
expectation values, {p*), for powers of the linear momen-
tum p, one soon notes the simplicity is deceptive as the two
representations at first glance give discordant results.
Similar discrepancies are found for the finite square-well
problem. We explore here the source and resolution of the
disparity in the two systems.

II. THE PROBLEM

For the particle in a one-dimensional box of length a the
x axis is divided into three regions with potentials

V=, x < —af2 (regionl),
V=0, —a/2 <x <af2 (regionll), ()
V=, af2 <x (region HI),

and wave functions
Yi(x) = ¥in(x) =0,
Yu(x), = (2/a)'/? cos(bx)
yu(x), = (2/a)"/? sin(bx)
b= (2mE,/h?)'/2 E, = n?z?h?/2ma2.  (3)
Using y; and the integration range —a/2 < x < a/2 it
is easy to show that for even s
(p*)n= (p}a¥2 = (2mE,)">, G

which implies a finite value for (p*) for all even s and a
momentum distribution consisting of é functions at p =
+(2mE,)V2 for all values of the box width. The latter fol-
lows from recognizing that the probability of finding the
particle with a value of p in the range p to p + dp must be
positive definite and that in the integral for {p*) the factor
p* acts as a weighting function which varies with p. If the
distribution were continuous, Eq. (4) would not obtain as
it implies a constant (in absolute magnitude) weighting.
Taking the Fourier transform of ¢(x) as in Eq. (5)

on(p) = Qrm)2 // " exp (T2X) yutxndx. (5)

one obtains for the momentum functions normalized to

(n odd), 2)

(n even),
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unity!
N,, sint
da(l) = 1= (ot/nm)? Qijnr)? (n even),
N,, cost
¢u(t) = 1= Qujnr)? (n odd), (6)
t = pa/2h,
Ny = (4afn?m3h)/2 (=1)r+ D12, (7)

For given n the distribution has major peaks centered near
p = £(2mE,)V/? which collapse to § functions as the box
becomes very large.2 The distribution function I,,(p) is not
two-valued and, as it is everywhere positive and decays as
p~4for large p, moments with even s = 4 are infinite.’

Since the two representations are equivalent, these dis-
crepancies force a closer look at the calculation of (p®) in
position space.

A similar need arises in the case of a finite well where the
potential is

Vix) =V, x < —a/2 (regionl),

V(x) =0, —a/2 <x <af2 (regionll), (8)
Vix) = Vo, a/2 <x (region III).

The even-parity position wave functions for regions I and
IT are*

Yi(x) = A cos(Ba/2) expla(x + a/2)],
Yn(x) = A cos(Bx), 9)

with A a normalization constant and the constants « and
B as given in Appendix A where the momentum wave
functions obtained as the Fourier transforms of the even-
and odd-position parity functions are presented. Of interest
is that for large p, I(p) decays as p—® such that in momen-
tum space {p*®) is infinite for even s = 6 while in position
space it remains finite if one does just the three integrations
implied by Eq. (8).

Considering the particle in a box and the finite well sys-
tems together it is clear the problem involves the disconti-
nuity in ¥ with the change from a finite to an infinite po-
tential jump only shifting the discrepancy from s = 6 to s
=4,

III. SOLUTION

The source of the problem appears in a qualitative con-
sideration of a box with rounded corners and very steeply
rising V for which ¥ and all its derivatives are continuous.
The wave function for this rounded box will have continuous
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derivatives and approach the true squared box function
asymptotically outside a small region about x = +a/2. In
Fig. 1 we show the first few derivatives for such a function
near the left-hand corner of the box. The function is dis-
cussed briefly in Appendix B. The rapid sharp oscillations
in Fig. 1 imply that since (p*) = (d*/dx*) one cannot ig-
nore, out of hand, the wall region as was done in calculating
(p*), in the limiting case of a squared box in Eq. (5).

For an infinite square well dy(x)/dx is discontinuous at
each wall. It then follows> that d%y(x)/dx? is a 6 function,
k0(x), and dM(x)/dx* is «xd?6(x)/dx? at x = *a/2.
Properly then in position space,

(p°) = (2mE, )s/2+2f

(10)
where ¢ is a vanishingly small positive number. Letting
t=a/2 + x,

the integral in Eq (10) can be rewritten as

Sl = " o) = (=0

d
d po 6(t) dt. (11)
As (1) = 0 for ¢t <0and ¢ (t)= sin(bt) = bt, for small
t > 0, the integrals of concern for {p2) and (p*), respec-
tively, are

j;‘ta(z)dt =0, (12)

< d%(1) _
[ a=2 == (3

The relation in Eq. (13) may be found by integration by
parts or by direct differentiation and reuse of the rela-
tion3

x6'(x) = —6(x) (14)
to obtain
x8”(x) = —2§(x) = 6(x)/x (15)
and for later reference
x6"(x) = —68(x)/x2. (16)

Thus the wall effects do not change the value for (p?) but
completely determine (p*}) for even s = 4 and eliminate the
discrepancy between the position and momentum repre-
sentations.

For a finite square well d2y(x)/dx? is the first discon-
tinuous derivative such that here d3y(x)/dx3 = «’6(x).
Expansion of ¥1(x) and yy;(x) from Eq. (9) about x = —a/2
gives for small ¢

Yn(®) —i(=1) « 12+ 0(23).
For {p*) and (p®) one has, respectively, the integrals

e ,dé(t) , ¢ _
j;ﬂ——d dt = j;té(t)dt 0, an

,d3() _ w,
(oS Pa=—s [ iandi== (9)

such that consideration of the discontinuity effect again
results in accord between the two representations.
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Fig. 1. Model position wave function and its first three derivatives at the
left-hand wall of a particle in a box with rounded corners.

IV. CONCLUSION

We have shown that the quantum-mechanical problem
of a particle in a box is not as simple as it seems at first sight
because of the discontinuity in the potential V. Here, as in
other systems, transformation to the momentum repre-
sentation provides information which is less readily ap-
parent in the position representation. The result for the fi-
nite square well is a general one. A discontinuity in ¥ re-
quires a discontinuity in d%(x)/dx? from the Schroedinger
equation which in turn implies that ¥, (¢) — ¥s(—1)=t?if
the two wave functions in the adjoining regions are ex-
panded in powers of ¢ about the point of discontinuity in V.
Thus, for any system with a finite discontinuity in ¥, {p9)

=w‘

ACKNOWLEDGMENT

Supported in part by Grant No. RR-8006 from the
General Research Branch, Division of Research Resources,
National Institutes of Health.

APPENDIX A

For the finite well of depth ¥y and width a, the momen-
tum wave functions found from the odd-parity position wave
functions? as the Fourier transform are

o (z) = Ap[B sin(d) cos(za/2) — z cos(d) sin(za/2)]
X [(a? + B2)/(a? + 22 (8> — 22)], (A.1)
with
z=p/h,  a=[2m(Vo— E)/h'?
d = Ba/2, B = (2mE/R2)\/2, (A2)
tan(d) = (Vo/E — 1)1/2,
Ao = 23/2(2xh)="/2 {[cos(2d) + 1]/«
+sin(2d)/8 + a}='/2.  (A.3)

Those for the even-parity functions are
¢(z) = A.[—p cos(d) sin(za/2) + z sin(d) cos(ca/2)]
X [(e? + B2/ (e + 22 (B> — z9)], (A4)
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A, = 23/2Q2rh)~ /2 {[1 — cos(2d)]/a
—sin(2d)/B + a}~1/2. (A.S)

APPENDIX B

Taking the origin for a particle in a box at the left-hand
wall and letting the length a = 2 and ¢t = bx, the position
wave functions are

‘/’I(t)n =0
Yu(t), = sin(z) (B.1)

To investigate the wall effects for a steeply rising po-
tential with continuous derivatives we seek a function which
reduces to ¢ and ¥ in the limit, has continuous derivatives,
and closely approximates or approdches asymptotically ¥,
and ¥ outside a small region about ¢ = 0 although not
necessarily for large ¢. The hyperbolic type function

y = 0.5 {sin(z) + [sin2(¢) + 2c2/tan(x/8)]"/}

(region I and HI),
(region IT).

(B.2)
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fulfills these conditions. This function and its first three
derivatives are plotted in Fig. 1 for ¢ = 1.0 X 10~ in the
range —1.0 X 1073 < ¢ < 1.0 X 1073, For this value of ¢ the
function, y, and its first three derivatives are within 0.07%
of the true values at |¢| = 0.01.
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