AMERICAN
JOURNAL

ﬁ:(‘,mu'.'!: (}J‘PHYS]CS
e S R

On the linear potential hill
R. Delbourgo

Citation: American Journal of Physics 45, 1110 (1977); doi: 10.1119/1.10958

View online: http://dx.doi.org/10.1119/1.10958

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/45/11?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
The linear potential propagator
Am. J. Phys. 65, 414 (1997); 10.1119/1.18550

Mass, charge, and energy separation by selective acceleration with a traveling potential hill
J. Appl. Phys. 80, 3646 (1996); 10.1063/1.363311

Variational treatment of the linear potential
Am. J. Phys. 58, 407 (1990); 10.1119/1.16460

The linear potential wavefunctions
J. Math. Phys. 21, 830 (1980); 10.1063/1.524462

Constructing a potential well-hill for overhead projectors
Phys. Teach. 16, 504 (1978); 10.1119/1.2340049

Explore the AAPT Career Center -
access hundreds of physics education and

other STEM teaching jobs at two-year and
four-year colleges and universities.

%#EI
http://jobs.aapt.org Eﬁ



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://jobs.aapt.org/
http://scitation.aip.org/search?value1=R.+Delbourgo&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.10958
http://scitation.aip.org/content/aapt/journal/ajp/45/11?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/65/5/10.1119/1.18550?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/80/7/10.1063/1.363311?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/58/4/10.1119/1.16460?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/21/4/10.1063/1.524462?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/tpt/16/7/10.1119/1.2340049?ver=pdfcov

On the linear potential hill

R. Delbourgo

Department of Physics, University of Tasmania, Hobart, Tasmania, Australia

" (Received 25 April 1977; accepted 18 June 1977)

By explicitly solving the Schrodinger equation for a particle encountering a linear potential
hil (V =0, x <0; V=Vx/a,0<x <a; V="V, x>a), we obtain corrections to
the quantum (g —0) and classical (a — «) limits for the transmission coefficient,
demonstrating the influence of the range a over which the potential rises.

A standard offering in undergraduate courses on quan-
tum mechanics,! one which highlights the difference be-
tween classical and quantum physics, is the transmission
of a particle across a potential step. It is probably the first
illustration which the student encounters of the profound
effect caused by the wavelike nature of matter: despite the
fact that the particle has enough energy to overcome the
step, one is surprised to find that the transmission coefficient
is less than unity—a result at total variance with classical
expectations since it runs contrary to everyone’s normal
experience (e.g., a ball with sufficient energy rolling up a
hill, etc.). The basic explanation for the quantum effect—
and this is not emphasized nearly-enough in the standard
texts—does not actually lie in the magnitude of the potential
change but in the range, say a, over which the change oc-
curs; only if a is smaller than the de Broglie wavelength vy
= 2x/k of the incoming particle do we expect the standard
quantum answer; on the other hand, for ka > 1 we antici-
pate the classical, macroscopic answer of total transmission,
a limit which can of course be recovered by applying well-
known semiclassical WKB methods! to the Schrodinger
equation, because the potential is then slowly varying.

In this note we would like to demonstrate the influence
of ka on the transmission factor by treating the problem of
the linear potential hill,

V=0  x<0

0<x<a
x>a. (1)

= Vyx/a,
= Vo,

This exercise has the advantage of being completely soluble
in terms of well tabulated (Airy) functions. Though we feel
sure that many people must have addressed themselves to
this example in the course of their undergraduate teaching,
we are not aware of the details having been exhibited any-
where in the literature?; we have undertaken to do so in this
article, hoping it will interest the keen student of quantum
mechanics. Specifically, we shall determine analytically the
corrections to the limiting situations (ka > 1 and ka > 1)
in appropriate powers of ka. Obviously, a computer could
provide the total link between the two regions of a large and
a small.

FORMAL SOLUTION

In the Schradinger equation, for a particle of energy E
> V,, make the usual substitutions A2k2/2m = E and
h2k3/2m = E — Vj, where k and kg are the wave numbers
to the left and right of the hill potential (1). Thus
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Y+ k=0,
¥+ ki =0,
In the region of the hill, 0 < x < a,
Y’ + [k2 — (k2 = k§)x/aly = 0,
it is appropriate to change variable to
Z = [(k? = k})fa]\ x = [ak¥/(k? = k})]*
= (2mVoa?/h?)'3(x/a — E/Vy) (2)

in order to cast the differential equation into standard
(Airy) form

x <0;

X >a.

dX/dZ? — Zy = 0. (3)

Note that Z is negative in the region of interest.
The appropriate solutions for left incoming waves are

Y =elkxr 4 re—ikx x <0
=a Al(Z)+BBi(Z), 0<x<a
= teikox=a) x> g 4)

and the continuity relations for  and ¢’ give
1+ r=aAi(Zp) + 8 Bi(Zy),
i(1 =r)=(=Zo)'"la Ai'(Zo) + 8 Bi'(Zo)],
1= a Ai(Z,) + B8 Bi(Z,),
it = (=Z,)"Pla AV'(Z,) + B BI'(Z4)]. (5)

Above, Ai and Bi are the two (linearly independent) Airy
function solutions? of (3) and

Zo=Z(x=0) = —[ak¥/(k? = k})?/* = —[kaE/Vo] >

Z,=Z(x = a) = —[akg/(k* - k§)]*/3 .
= —[koa(E/Vo— D]?/3. (6)

It is an elementary algebraic exercise to determine the re-
flexion r and transmission amplitude ¢ from (5):

Dt = 2i/x(=Z,)'/2, (72)

Dr = [AUZ,) + i Ai'(Zo)(—~Zo)~][Bi(Z,)
+ i B'(Z,)(—Z,)~"/2] —=[Bi(Zo) + i Bi"(Zo)
X (=Z0)""2)[A(Za) + i AI(Za)(—Za)~'?], (Tb)

D = [Ai(Zo) — iAT(Zo)(—Zo)~ '] [Bi(Za)
+ i Bi'(Z,)(—Z4)™"/?] — [Bi(Zo) — iBI'(Zo)(~Zo)~ "]

X [AI(Z,) +i AI(Z)(=Za)"'2),  (T¢)
upon using the Wronskian Ai Bi’ — Ai’ Bi = 1/=. It is
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straightforward to check that the reflexion and transmission
coefficients

R=|rl% T=|t|*ko/k = |t|(Za)/Z0)'  (8)

_satisfy flux conservation, R + T = 1.

From this point onwards there is nothing left to do but
look up the properties and tables? of Airy functions in order
to determine R and T. A simple computer program could
easily accomplish this.

ANALYTICAL EXPRESSIONS NEAR THE
CLASSICAL AND QUANTUM LIMITS

We prefer, however, to display asymptotic expressions
in the classical (ka > 1) and quantum (ka <« 1) limits
which show the deviations from the standard textbook an-
swers for finite a. For this we require the series expan-
sions:

Ai(Z) = e f(Z) — c28(2),
Bi(Z) = 3'/2[c\f(Z) + c28(2)]. (%)

with

C102 = 1/21!'31/2 (9b)
and
AZ)=1+2Z3/6 +0(Z9),

g(Z)=Z+ZY12+0(Z") (%)

useful when Z « 1, i.e,, ka « 1. We also need the asymp-
totic expansions for Z > 1 (ka > 1),

Ai(=Z) ~ 7= V2Z7V/3sin(§ + 7/ 4)F(Z)
—cos({+ x/4)B(Z)],

Bi(=2) ~ =1/2Z~/%[cos({ + 7 /4)F(Z)
+ sin({ + 7/4)G(Z)].,

AV (=Z) ~ —m~1/12ZV/4[cos({ + 7 /4)F(Z)
+ sin({ + 7/4)G(Z)],

Bi"(—Z) ~ n="/2Z/A[sin({ + 7 /4)F(Z)

—cos({ + 1r/4)E(Z)], (10a)
where ’
=273%2/3 (10b)
and
F(Z) =1-385/4608Z3 + O(Z~%),
G(Z) = 5/482Z3/2 + O(Z~9/?),
F(Z) =1+ 455/4608Z3 + O(Z9),
G(Z) = —7/48Z3/2 + O(Z~9/2). (10c)

The first limit of interest, ka << 1, corresponds to a steep
potential hill. Both Zy and Z, are small here for finite £,
and we can substitute expansions (10) in (7). One finds

D =Y \/;7 ” O [y Za ~ Zo)
X (V=Z,+ V=2
+ 1{1 + 1/6(Za - 20)2(20 + Za -V ZOZa)}]
giving
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4(ZoZ,)'?
2o+ V=2
X(V —Z;—V -ZO)le

T~ |1+ %2(Z, = Zo)?

__ 4kko
(k + kg)?
Notice how the transmission coefficient is enhanced by the
finite width a of the hill.#

The second, classical, limit for a shallow hill has g — «
with k and kg finite; this means taking Z, and Zy to —.
Going through the same rigmarole, one finds

_ 2ieitsa=ba)
(2024 )1/4

v | 1 _ 2= (s-1 —12
<1+ (57 6°)+10368(6 551)

[1+ Yi2a%(k — ko)? + O(ka)*]. (11)

- 5’5(505,,)-1 sin(8g — 8, )e(bo—ba) + 0(5-4))

where §; = 2/3(—Z;)¥2. One easily computes

T=1=(Y%a)[(—=Zo)™? = (=Z,)¥}?
+ 45in2(80 — 6,)(Z0Za)~¥? + O(Z~6)]

=1+ (%a)(Z3 + Z3) + O(Z79), upon averaging sin2,

2 - 2)2

=1 —gfﬂ(k-6 + k5% + O((ka)™4. (12)
64a?

Here one sees that transmission is lowered? by the finite

range a, as expected.

There is one final limit which can be treated analytically
which has Zg — « and Z, — 0 simultaneously. In this
situation we must have ka — « and kga finite, which cor-
responds to a particle that can barely creep over a shallow
hill. Here we have a formulas (9) and (10). Without going

through the obvious details again, we shall quote the an-
swers in leading order:

D = 20V 12(=Zo)~VA[co(—Z )~ Ve —io—5%/6)
+ cle—i(50—21r/3)] + 0(23/21263/2)

or
T ~ (=Z,)?xci~ 4.76koa(ka)=%3. (13)

Thus when the de Broglie wavelength of the transmitted
wave is comparable with the range of the potential rise, we
are still far from the classical situation of full transmis-
sion,®

DISCUSSION

We believe that the model and the results which we have
obtained for it are characteristic of more general physical
potentials which undergo smooth rises from ¥V =0to V =
Vo. That is, the finite physical extent of the potential in-
crease results in an enhancement of the quantum-me-
chanical transmission factor [by terms of order (ka) 3, or
equivalently a diminution of the classical unit transmission
factor [by terms of order (koa)—2]. In practice, of course,
we should be concerned with incoming wave packets, not
plane waves. What our results show is that, for a rather
steep hill, there is a sizeable increase in transmission for the
Fourier components having incoming k of order 1/a or less;
while for the opposite case of a shallow hill, it is the same
Fourier components which are relevant for depressing the
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classical transmission coefficient below 1. The detailed
answers obviously depend on the detailed composition of
the wave packet and the shape of the potential.2

This investigation was prompted by Dr. D. Websdale who
questioned the relevance of standard textbook presentations
of the potential step in the context of ordinary macroscopic
situations, and was interested to see how the transition from
the classical to the quantum limit can be exhibited most
simply at one stroke.

ISee, for instance, A. Messiah, Quantum Mechanics (North-Holland,
Amsterdam, 1961), Vol. I.

2The only reference we have been able to locate where a comparable ex-
ample is treated is the book by I. I. Goldman, V. D. Krivchenkov, V. L.

Kogan, and V. M. Galitskii, Problems in Quantum Mechanics (Info-
search Ltd., London, 1960). These authors consider the potential ¥(x)
= Vo[l + e~27x/a]~) and work out the transmission factor to be T =
(sinh ak)(sinh ako)/sinh2 Yha(k + ko) where k and kg refer to the wave
numbers as x —> — « and x ~— o respectively. It is amusing to compare
the limiting values of this formula with our example and results (11),
(12), and (13): one finds that it is the corrections to the classical answer
T = 1 which arc most sensitive to the detailed shape of the potential
rise.

3M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions
(Dover, New York, 1965).

4The potential of Ref. 2 yiclds the same answer to this order.

5The same effect is apparent in the potential of Ref. 2, although the answer,
T =1 — (e~¢k — ¢~2k0)2 4+ ... is rather different.

5Again Ref. 2 supports this statement, although it specifically yields T
= 2koa, instead of (13).
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