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Singular potentials in one dimension

M. Andrews

Department of Theoretical Physics, Faculty of Science, The Australian National University, Canberra,

Australian Capital Territory 2600, Australia
(Received 1 August 1975; revised 4 December 1975)

In quantum mechanics of one dimension it is shown for potentials which become infinite at a
point but are continuous elsewhere, that the singularity acts as an impenetrable barrier if the
potential is not integrable up to the singularity, but if the potential is integrable the behavior
is not essentially different from that of a potential which does not become infinite.

I. INTRODUCTION

The one-dimensional Schrédinger equation will be con-
sidered for potentials V(x) which are continuous every-
where except that |V(x)| — = as x — +0. It makes no
difference to the discussion whether the infinite value be
attractive or repulsive. We will divide such potentials into
suitable classes and then consider which solutions of the
Schrédinger equation are physically acceptable. This will
lead to the conclusion that if the potential is integrable then,
for each energy, there are two solutions which are accept-
able as far as their behavior at x = 0 is concerned and the
physics is no different from that of a nonsingular potential.
If the potential is not integrable (but not so singular as to
lie outside the scope of our investigation), then only one
solution is acceptable on either side of the singularity, which
acts as an impenetrable barrier. It is intuitively reasonable
that a repulsive singular potential might act as an impene-
trable barrier; perhaps it is more surprising that an at-
tractive potential is equally potent in this regard.

In considering discontinuities or infinities of the potential
in quantum mechanics, it can be argued that such behavior
is to be regarded only as a convenient model of the true
situation in which the singularities would inevitably be
smoothed out. In any case it is important to know whether
the singular potential does predict the same physical con-
sequences as result when a negligibly small amount of
smoothing is present. Obviously a smoothed potential is
never impenetrable, but for the case of a smoothed nonin-
tegrable potential it is shown that the transmission of par-
ticle flux tends to zero as the smoothed potential approaches
the singular form.

The one-dimensional hydrogen atom (for which V =
—C|x|~") is an example of a singular potential which has
been discussed in earlier contributions' -3 to this Journal.
In Appendix B these contributions are reexamined.

II. CLASSIFICATION OF POTENTIALS

The Schrodinger equation is y” — V(x)y + EYy =0
(units have been chosen such that A = 2m = 1). We assume
that | V(x)| — « as x —> +0, and if there is any asymmetry
about x = 0, it will be assumed that the behavior as x — —0
is not more singular than it is for x — +0. It will be conve-
nient to divide these singular potentials into three classes.
The notation f f(x) dx will be used to denote

lim | f(x)dx

e—0 €

for any choice of @ with a > ¢ > 0.
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Class MS (mildly singular) with f, ¥ dx < . Poten-
tials in this class are singular (in the sense that they
become infinitely large at x = 0) but not as singular

- as thle one-dimensional hydrogen atom (H1) with V
= Cl|x|~.

" Class S with f, x| V(x)| dx < = but with §. ¥(y) dy
— o as x — 0. This class includes H1.

Class XS with §, x|V(x)| dx divergent. New prob-
lems arise in this class and it will not be considered
here. Some potentials in this class have been consid-
ered by Case.* Note that many authors use the term
singular potential to apply only to this class.

III. ACCEPTABLE SOLUTIONS WITH
SINGULAR POTENTIALS

It is a basic premise of quantum mechanics that physical
quantities must be represented by Hermitian operators. In
our context then p2 and ¥ (and therefore H = p2 + V) must
be Hermitian. In particular, (V) must exist (allowing for
the nonnormalizability of the wave function in the case of
positive energy states). Thus f; [¢|2V dx must exist. In
Appendix A it is shown that, if V(x) is in class MS or S,
there will be a regular solution F and an irregular solution
G such that, for small x, F ~ x and G ~ 1. Hence [, F2V
dx exists, whereas f, G2V dx exists if ¥V is in class MS but
diverges for class S. Thus for class S only the regular solu-
tion F is acceptable, while for class MS both solutions F and
G can be admitted.

When there is only one allowable solution at the singular
point, there can be no particle flux. The function F is real
and the flux j = i[(VF)*F — F¥(VF)] is then zero. Com-
plex linear combinations of two independent real solutions
are required to give a flux. Therefore there can be a particle
flux for class MS but there can be none for class S. Now the
question of how to match left to right becomes clear. For
class MS the situation is just as for a nonsingular potential:
the wave functions and their derivatives are well behaved.-
and match in magnitude and derivative as usual. In case S
the singularity isolates left from right, and there is no reason
to try to match the wave functions.

If the potential is integrable up to x = 0 from the left but
not from the right, then only the regular solutions are to be
used. We have already established for such a potential that
admissable wave functions must vanish as x — +0; to make
the momentum operator Hermitian we then require that
wave functions vanish as x — —0. In physical terms the
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potential on the right acts as an impenetrable barrier and
for all forms of impenetrable barrier the wave function must
vanish.

IV. SMOOTHING OUT THE SINGULARITY

In this section consideration will be given to the Schro-
dinger equation when the potential V(x) (which is now
taken to be an even singular function) is replaced by a
nonsingular even potential U(x) for |x| < & while re-
maining unchanged for |x| = b. Finding the solutions is
straightforward; one matches the solutions for ¥(x) to those
for U(x) in magnitude and derivative at x = +b and at x
= —p. With the potential ¥V (x) two linearly independent
solutions are F(x) and G(x) as described above. Let u(x)
and v(x) be two linearly independent solutions with po-
tential U(x). One can take u(x) to be even and v(x) to be
odd. If u(x) were neither even nor odd, then even and odd
combinations of u(x) and u(—x) could be constructed,
while if # and v were both even or both odd, the Wronskian
[u,0] = uv’ — u'v would vanish at x = 0, which is inconsis-
tent with the linear independence of u and v. The Wron-
skians [1,0] and [F,G] must be independent of x and non-
zero. Our choice of F and G gives [F,G] = —1; furthermore,
we choose u ~ 1 and v ~ x so that {u,v] = 1.

To find the odd solution £(x) with the smoothed potential,
a linear combination of F and G is matched to the odd
function v(x) at x = b. The appropriate linear combination
is easily seen to be £ = [G,v],F — [F,0]sG. Similarly, the
even solution is n = [G,u],F — [F,u]»G. For the determi-
nation of the form of these solutions as & — 0 (and for the
consideration of the transmission coefficient discussed
below) we require the behavior for small b of the coefficients
of Fand G, i.e., the “mixed” Wronskians [H,w], in which
H stands for F or G and w stands for u or v. These can be
determined from the equation

L (Hw] = (U~ V)Hw,

dx
which follows readily from the Schrédinger equations H”
= (V= K?)H and w” = (U — K?)w. Unless [H,w] diverges
for small x, it follows that

[Hwly = [Hw]o — j;b (V — U)Hw dx.

For any reasonable smoothing potential U(x) the integral
in this relation will be of order f{ VHw dx for small b.

Thus
b
[Fuls~—1+0 <J; Vi dx>,

[G.oly~ 1+ 0 (J;b qu'x),

[Fvly~ 0O <j;b Vx? dx),

while for [G,u] one must distinguish the class of the po-

tential:
b
o <J; de) for class MS,
[Gul, ~ b
0( f de) for class S.
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From these results one finds that in the limit as b — 0 the
odd solution becomes F while the even solution depends on
the class: in class MS the even solution becomes G but in
class S the even solution becomes F and the derivative is
discontinuous. This agrees with our conclusion above that
only the regular solution F is acceptable for class S.

It will now be shown that for class S the transmission
from left to right vanishes as & — 0. To have a wave func-
tion on the right which is purely outgoing for large x, we
must arrange that F and G are in a certain (complex) ratio;
the precise ratio is not required—merely that both F and
G must be present. When b is small, there is very little of
G in either the odd function £ or the even function 7.
Therefore a very large amount of £ and n would be required
to give unit flux—a mixture of £ and n with very large
coefficients, the coefficients of F almost cancelling to leave
F and G of the same order. Then on the left-hand side the
coefficients of F would not cancel, i.e., a very large ampli-
tude wave incident from the left would be almost entirely
reflected. Thus the transmission coefficient tends to zero
as b does.

This isolation of left from right can be viewed from a
different angle. Instead of the odd and even functions
formed from F, one could (by taking the sum and difference
of these two) form a function which is the same as F on the
right but zero on the left and another function which is zero
on the right. Any wave function which is zero on the left can
be expanded in terms of the eigenfunctions zero on the left
and under any nonsingular perturbation will evolve only into
states zero on the left.

V. DEGENERACY

So far we have considered only the neighborhood of the
singularity. There are-also boundary conditions to be sat-
isfied as x —> +. It is well knownS3 that for nonsingular
potentials such that ¥(x) — 0 as |x| — <« both of the two
solutions for any positive energy are acceptable. Such states
are therefore said to be twofold degenerate and eigenstates
of nonzero flux are possible. There may also be discrete
negative-energy solutions (bound states) and these are
necessarily nondegenerate.

For singular potentials of class MS these conclusions will
still hold but for class S we really have two independent
systems (left and right) and all states of each half will be
nondegenerate. [t may happen that some of the bound states
on the left have the same energy as those on the right; in-
deed, if the potential is symmetric, this will be true of every
bound state. One could use the term degenerate to apply to
such states of the whole system as well as to its positive-
energy states.

Here the details of the physics being modelled become
important. If some smoothing is present, then there will be
a slow leakage from one side to the other. For phenomena
occurring over such a short period of time that this leakage
is negligible, the two sides are effectively isolated and the
notion of degeneracy has no relevance. Over a longer period
of time, so that the leakage is important, the model using
the singular potential is not strictly accurate and there
cannot be exact degeneracy. However, the wave functions
and eigenvalues provided by that model may be useful for
some purposes. In this case the matter of whether some
states are (almost) degenerate may be of significance.
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APPENDIX A: SOLUTIONS OF THE
SCHRODINGER EQUATION
NEAR A SINGULARITY

Unfortunately, the theory of the asymptotic behavior of
solutions of differential equations is usually presented in a
form applicable to large values of the independent variable.
However, if one changes to t = 1/x and also to 1y/(x) as
dependent function, then a standard theorem® becomes
applicable. Converting back to the original variables one
concludes that, if {0 x|V(x)| dx < e, then there are so-
lutions ¢ = F(x) and ¢ = G(x) such thatas x — 0

F/x — 1,
G—1,

Fr—1,
xG' — 0.

Since one has
G'(x) = G'(a) — f “G7(y) dy
= G'(a) - f “ V) - EIGW) dy,

it follows for class S [where { V() dy — « as x — 0] that
G’ (x) — « as x — 0, whereas for class MS it follows that
G’(x) has a definite limit G’(0) as x — 0. If G’(0) > 0, then
G(x) =G(x) — G7(0). F(x) is also a solution of the differ-
ential equation with G(0) = 1 and G’(0) = 0. Hence, for
class MS there is a solution G such that,asx — 0, G — 1
and G' — 0.

A somewhat simpler argument can be made if the po-
tential is assumed to behave as a power of x for small x
[thus V(x) = —Cx*~2 with 0 < s < 2]. The Schrédinger
equations becomes y” + (Cx*~2 + E)¢ = 0 and it is clear
that for small x the energy term Ey can be ignored in
comparison with the singular potential term. With the in-
dependent variable transformed to x*, the equation y” +
Cxs~2%y = 0 becomes amenable to solution in power series.
In fact, it becomes a form of Bessel’s equation,” but the
behavior for small x can most simply be obtained by finding
the leading terms of the series expansion directly from the
equation before transformation. In this way one finds that
the regular solution is

F~x[1 = Cx%/s(s + 1) + higher powers of x*],

and the irregular solution is (for s 1)

G ~ 1 — Cx%/s(s — 1) + higher powers of x*.
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As usual these series can be differentiated term by term,
and hence F’ ~ | while G’ ~ —Cx*~!/(s — 1). Thus G’
tends to zero with x if s > 1 (i.e., for class MS) but diverges
if s <1 (i.e., for class S). For s = 1 (H1) the solution can
be found by standard methods and G’ diverges logarith-
mically.

APPENDIX B: ONE-DIMENSIONAL
HYDROGEN ATOM

The potential ¥(x) = —C|x| =" lies on the boundary of
class S, but clearly within it. The integral {, G2V dx di-
verges logarithmically, so that G must be rejected. Haines
and Roberts® admit G as physically acceptable and are led
to a continuum of negative-energy eigenstates. This set of
states is clearly unacceptable; not only does the expectation
value of the potential energy not exist, but eigenstates of
different energy are not always orthogonal to each other.
For example, any two of their “first continuum wave
functions” have no zeros (as shown in their Fig. 1) and are
consequently not orthogonal. It follows that the Hamilto-.
nian is not Hermitian with respect to their set of states. The
treatment given by Loudon' leads to the correct conclusions,
apart from a previously noted error.?

There is another respect in which Haines and Roberts
differ from our conclusions. While admitting the regular
function F as an odd solution, they reject it as an even so-
lution on the grounds that it does not then satisfy the
Schrodinger equation at x = 0. Indeed it does not, since
taking the second derivative gives rise to a é function: if ¥(x)
= F(|x|), then y” = F”(|x|) + 25(x). However, this does
not matter—since there is an impenetrable barrier at x =
0, adding a é function to it makes no difference. For example
the & function does not affect any matrix elements of the
Hamiltonian because all admissible wave functions vanish
at x =0.
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