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Simple examples of elastic scattering, typically from
square wells, serve as important pedagogical tools in
discussion of the concepts and processes involved in
elastic scattering events. An analytic solution of a model
inelastic scattering system is presented here to serve in
this role for inelastic events. The model and its solution
are simple enough to be of pedagogical utility, but also
retain enough of the important physical features to
include most of the special characteristics of inelastic
systems. The specific model chosen is the collision of an
atom with a harmonic oscillator, interacting via a repul-
sive square well potential. Pedagogically important fea-
tures of inelastic scattering, including its multistate
character, convergence behavior, and dependence on an
“inelastic potential” are emphasized as the solution is
determined. Results are presented for various energies
and strengths of inelastic scattering, which show that the
model is capable of providing an elementary representa-
tion of vibrationally inelastic scattering.

I. INTRODUCTION

Standard treatments of collision problems motivate the
concepts involved in elastic scattering by considering
simple examples, usually one-dimensional scattering from
square or spherical wells.! The behavior of the parameter
characterizing the scattering (phase shift, transmission
coefficient, or the like) is discussed with reference to the
physical nature of the system. Not only does this often
clarify particular points for the student, but it also ex-
plains the meaning of the numerical or functional results in
terms of the physics of the system, which is the point of
the exercise. However, for inelastic scattering, typical
discussions are purely formal, with no exact solutions of
examples provided. Thus, no concrete base is laid for
new concepts, nor can the student obtain a proper feeling
for the expected magnitude or behavior of the results. As
such material appears earlier in the curriculum, it be-
comes increasingly desirable to present this assistance.

We describe here an inelastic collision system by
means of which this basis can be provided. The model
system is sufficiently complex that the results display a
number of the special features of inelastic systems, but it
nonetheless possesses a relatively simple, analytic solu-
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tion. There are a few other inelastic systems? for which
analytic solutions are known, but they involve much more
severe simplifications. The system used here is not only
of tutorial interest, but may also prove valuable as an
elementary model for the behavior of inelastic scattering
in real systems.

In the next section we describe the inelastic scattering
process and begin the solution of the Schroedinger equa-
tion for the model system presented here. Points of spe-
cial pedagogical interest for the inelastic collision process
are discussed in detail. In the third section, the specifica-
tion of the model system is completed and the solution
presented. Here emphasis is placed on the interpretation
of the particular solution found and on the relation of its
behavior to the physical processes occurring during the
collision event. The final section summarizes the results
of this investigation.

II. DESCRIPTION OF THE INELASTIC SCATTER-
ING PROCESS

The purpose of this section is to provide a physical de-
scription of the inelastic scattering process to accompany
the formal mathematical development from the
Schroedinger equation. The description is given using the
scattering of an atom from a nonrotating diatomic
molecule as a model. Before and after the collision, the
atom and molecule are so well separated that the interac-
tion between them is negligible. During the close en-
counter portion of the collision, the interaction may be
strong enough to change the vibrational state of the
diatom. If the molecule does leave the encounter in a new
state of different energy, the kinetic energy of the atom
will be changed also, to conserve energy; such collisions,
resulting in a change in relative speed of the particles, are
called inelastic.

To avoid nonessential complications, the specific model
for this process is taken to be the collision of a structure-
less particle (the atom) with a harmonic oscillator (the
molecule), with all three particles constrained to lie on a
straight line; the rationale is that the collinear configura-
tion is the most effective in promoting vibrational excita-
tion of the molecule. This one-dimensional model is in-
capable of assigning any angular distribution to the scat-
tering; the results of interest are the inelastic scattering
probabilities which specify the distribution of molecules
among the possible vibrational states. The model is crude
not only in its description of the particles but also in its
neglect of all three-dimensional aspects of the real prob-
lem. Nonetheless, it proves useful for the vibrational scat-
tering problem,® and by so limiting the possible physical
processes it focuses attention on the inelastic event itself.

This inelastic vibration scattering process is, of course,
formalized in the Schroedinger equation. For the collision
of a particle of mass u with this oscillator, the
Schroedinger equation in atomic (Hartree) units is

1 3
<_ EE, '5';5+H[+ V(x, y)—E) ‘I"(x, y)=0, (1)
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where x is the distance of the atom from the equilibrium
position of the molecule, E is the total energy of the sys-
tem (excluding center-of-mass motion), and ¥ is the
wave function describing both the oscillator and the atom,
with the subscript i identifying the initial state of the
molecule. V(x,y), the interaction between the collision
partners, vanishes when x is large (pre- and postcollision
regions). H, is the Hamiltonian for the molecule; it gives
the well-known harmonic oscillator result

Hld)n(y) =€n¢n(-y)
= (n_%)(pn(y)y n= 1’ 29 39 v ey (2)

where ¢, is the eigenfunction with eigenvalue €, and y is
the oscillator (molecular) coordinate. By way of nomen-
clature, each state ¢, determines a ‘‘channel’’ for the col-
lision: The atom begins the collision in the entrance
channel i (the molecule is in state ¢;) and departs in some
exit channel f (the molecule is in state ¢,).

The dependence of the wave function on two indepen-
dent variables has several important consequences. First,
the solution of the equation is difficult to obtain directly.
Equally important, even if the solution were found, its in-
terpretation in terms of physical processes would still be
difficult. In order to obtain both the solution and its
meaning, we expand the wave function in terms of the
complete set of bound molecular (oscillator) states:

N
V(% 9) =21 dpy () (9); 3)

this expansion is formally exact if all the molecular states
are included (N — ). The wave function y,;(x) then de-
scribes the colliding atom when the molecule is in state n,
a function much easier to interpret than the two-
dimensional form. It i§ the necessity* to make this expan-
sion of the wave function that in part distinguishes inelas-
tic from elastic scattering. That is, inelastic scattering is
inherently a multistate process, in contrast to elastic scat-
tering and most elementary bound-state processes. Inelas-
tic scattering provides a particularly simple demonstration
of the behavior of such a system.

We employ the separation of variables suggested by
Eq. (3) in the following way. Substitute this equation into
the Schroedinger equation (1) and use Eq. (2) to find

Z(_Elﬁ 5?’6—22+V(x,y)-— (E-e,,)>zp,,,(x)¢,,(y)=0. 4)

Now multiply on the left by ¢,,*(y), integrate over all y,
and use the orthonormality of the molecular wave func-
tions; then

(d% +Rpt =20 V,,,,,,(x)) Dma ()

- 2u E' an(x)zpn{(x)=0-
m=1,2,3,..., (5
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where

Vn®) = [ 0,X(9)V(x, )b, (v) dy, (6)
= |20(E =€,)| 172, 7

and the prime on the summation over n in Eq. (5) means
that the n = m term is to be omitted. If the off-diagonal
elements of V were zero, the summation in Eq. (5) would
vanish; the interpretation of the first term would be just
that of elastic scattering by the potential V,,,,(x) at a colli-
sion energy E — €. It is the second term of the equation
that causes the inelastic scattering by coupling all the
wave functions together. Thus, initially only ¥; contains
amplitude, but as the collision progresses and x becomes
smaller, the Vp,a;; term in each of the Egs. (5) pumps
amplitude into each of the states ys,,;. The precise nature
of the final distribution of amplitude among all the states
¢ according to the prescription (5) determines the inelas-
tic scattering probabilities.

These probabilities are uniquely specified by the impos-
ition of the boundary conditions for the system. The di-
rectness of this procedure in scattering problems stresses
the important role of boundary conditions in specifying
solutions to the Schroedinger equation. A set of boundary
conditions appropriate to the present problem are

lim ¥,(x) =0, (8a)
Xomc0
Lim 9, (x) = &,V 2[5, sin(k, %)+ R,, cos(k,x)],
n<M (8b)
=0, n>M, (8¢c)

Equation (8a) is simply the statement that the atom is
not allowed to pass completely through the molecule; the
potential V(x,y) must account for this physical constraint
on the system, as well as vanishing for large positive x.
Now consider Eq. (8c). If the oscillator energy ¢, is great-
er than the total energy E, energy conservation forbids
scattering to this state. If M is the molecular state with
the highest energy less than E, channels labeled by
n <M are called open and are accessible to scattering;
the remaining channels, with n larger than M, are closed.
However, this does not mean that the expansion given in
Eq. (3) can be truncated at n = M, rather it means that
amplitude produced in a closed channel during the course
of a collision must leak back out of the channel before
the termination of the encounter.

Equation (8b) contains the information which deter-
mines the inelastic scattering probabilities. The delta term
merely ensures the proper behavior of the wave function
in the entrance channel. The numbers R,; for n and i
ranging from 1 to N determine an N XN (M X M if N is
greater than M) matrix R called the reactance matrix.
These boundary conditions are used because they make
the solution found in the next section to be real; then the
inelastic transition probability is given by

Py= | ZR-1),[(R2+ 1)1, (R- 1),y |2, (9)
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An alternate form® for the boundary condition would re-
place Eq. (8b) with

’Icim Vni(x) =6, exp(- ik, x)+ T,y exp(+ik,x), (8b’)
e )
for which

Pfi= | Ty |2- . (9"

This set of boundary conditions has the advantage of be-
ing directly interpretable in terms of the physical process-
es involved. Thus, the first term represents the incoming
atom as a plane wave moving to the left; the second, the
outgoing plane wave moving to the right, having been
scattered by the vibrator. The mterpretatlon of the un-
primed set of boundary conditions is then that it is a con-
venient linear combination of the physically more mean-
ingful set.

III. A SOLUBLE MODEL

In this section we complete the specifications of the
model system, by defining the interaction potential
V(x,y), and discuss the solution obtained. We choose the
potential to be separable,

Vix, y) = vix)v(y), (10)

and maintain a connection with previous work® on vibra-
tional scattering by using an exponential potential in the
molecular coordinate:

v(y) =exp(ay). (11)

For simplicity, we then choose a square-mound potential
in the relative coordinate:

v(x) ==, x <x,; (region I)

=D, x;<x <xy (region II)

=0, xg<x (region III). (12)

As in the elastic case, the choice of a square potential has
the special advantage that an analytic solution of the
Schroedinger equation is possible. The choice of potential
in region I prevents the atom from passing through the
oscillator, in agreement with Eq. (8a); the choice in re-
gion III is fixed by the requirement that the interaction be-
tween the collision partners vanish at infinity. Using Egs.
(10)~(12) in Eq. (5) and defining

Un(@) = [ &,*(3) exp(@y)d,,(y)dy

=(2™"m! /n!)V/ 2 exp(0?/4)
xammL mma/9),  p>m (13)
Unn and L,® is an associated Laguerre

where U,, =
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polynomial,? in region II Eq. (5) becomes

2 ’
(di? +k - 2“'DUmm>¢mi(x) - 2IJ'DE Umnwni(x) =

(14a)
and in region III it becomes
d
it m 2 Palx)=0. (14b)

The form of Egs. (14) is similar to one given by New-
ton,% but the explicit solution is not given there. The solu-
tion of Eq. (14a) that satisfies the boundary condition (8a)
at x =x; is”

Pny(2) =§Amnjw . (15a)

m

The solution of Eq. (14b) that satisfies the boundary con-
ditions (8b) and (8c) at large x is given by

Vs () =k, V25, sin(k,x) + R,y cos(k,x)], n<M

= F, exp(-k,x), n>M., (15b)

The parameters y,, in Eq. (15) are the eigenvalues of an
N X N matrix W with elements W;; = k;5;; + 2uDU ;. The
unknown coefficients Apy;, Ry, and F; are then found by
forcing continuity upon all the wave functions and their
first derivatives at x = xz. The numerical procedures of
(i) finding the eigenvalues and (ii) solving the algebraic
equations resulting from the continuity conditions can
both be carried out without great difficulty upon a digital
computer. Accurate values for the transition probabilities
P;; can then be found by increasing N until the prob-
abilities remain constant.

We now comment on the interpretation of the solutions
obtained. The wave function for the open channels
beyond the range of the potential is self-explanatory; for
the closed channels, the wave function there is a decaying
exponential in order to satisfy the boundary condition that
they contain no amplitude at infinity. This is, of course,
just the behavior of a bound-state function for a particle
in a box; in fact, the closed-channel states are most im-
portant when a quasibound state of the system exists, but
this is a separate topic we cannot discuss here.® Inside the
square-mound potential, the wave function is more com-
phcated Basically, the v,,’s are combinations of all the
kn’s with the inelastic potentials DU,,,. We may define
inelastic potential strength parameters as

Spa=20DU,, /b5 (16)

then with r = k,,x, Eq. (14a) may be written

(d(§2+1 Sm'n)‘pml(t) Esmnzpni(t) 0. (17
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Table I. « = 1.00.

m: 0 1 2 3 4
Rum n
—1.0539 —1.4445 -1.3019 —-0.7253 -0.1812 0
-2.9956 —3.0289 —1.7358 —-0.4336 1
0 0.6197 ~3.8019 —2.4684 —0.6664 2
1 0.2858 0.1981 -2.1256 —0.7764 3
2 0.0709 0.4157 0.1189 —-0.5459 4
3 0.0202 0.0846  0.3609  0.3006
4 0.0034 0.0158 0.0336 0.2337 0.7134
n Pum

When all the § parameters are small, the set of momenta
v will be only weakly shifted (perturbed) from the set of
momenta k. As the inelastic potential strengths increase,
the shifts become large, and vy, can no longer be iden-
tified with k,,. Under these conditions the states represent
more nearly those of the atom—diatom complex than those
of the separate species.

,We have carried out calculations for a variety of values
of £, D, and & with w =1, x,=0, and xz = 1. Some
typical results are given in Table I for E =5, D =1, and
a =1, and in Table II with a changed to %. The upper
right-triangular portion of the tables contains the R-matrix
elements; the lower left-triangular portion, the transition
probabilities P (both R and P are symmetric matrices). In
these calculations, N was increased until P,,, the proba-
bility of making a transition from the ground state to the
first excited state, appeared to converge to 0.1%. The ac-
curacy of the other elements was not generally monitored,
but trial calculations indicate convergence to the accuracy
reported in the tables. In Table I, nine states were re-
quired for convergence, while for Table II only five states
were needed; in both the number of open channels is five.
The general trend confirmed these results: for small «,
N =M, but for large a, from five to ten closed channels
are necessary to obtain this degree of convergence.

More general properties of the transition probabilities
can be found in Figs. 1 and 2, in which P, (solid curve)
and 1 — Py, the total inelastic transition probability
(dashed curve), are plotted. Figure 1 plots these functions
against the parameter «; Fig. 2, against the energy for
several values of a. In Fig. 1 the rapid increase of the
inelastic transition probability comes as no surprise, since

Table II. & = 0.25.

m: 0 1 2 3 4
Rum n
—0.4458 -0.1104 -0.0210 —-0.0030 -0.0002 ©
—0.5770 -0.1758 -0.0290 -0.0021 1
0 0.9705 —0.6601 -0.1874 -0.0182 2
1 0.0287 0.9107 -0.6109 —-0.1277 3
2 0.0008 0.0591  0.8740 —-0.3963 4
3 0.0000 0.0014 0.0653 0.8946
4 0.0000 0.0000 0.0008 0.0387 0.9605
n Pﬂm
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Fig. 1. Excitation probability Py; (solid line) and total inelastic excita-
tion probability 1 — Py, (dashed line) at D =1 for E =2 (), E =4
(A), and E =7 (m). The two curves are not resolved for E = 2 at this
scale.

the coupling strength S,, increases with a. The term U,,,
is proportional to a polynomial of order (a?),_,, so the
off-diagonal (inelastic) rapidly dominates as « increases.
At the largest values for S,,, there is a tendency for P,, to
decrease; the corresponding increase in 1 — Py, provides
the interpretation that the rapid increase in the higher ex-
citations occurs in part at the expense of the lower excited
states, and emphasizes the dynamical nature of the cou-
pling in Eq. (17).

The plots with the incident energy in Fig. 2 display
some other interesting features of the inelastic scattering
in this system. For two of the sets of choices of parame-
ters the barrier height is D = 5, larger than the incident
energy for a long range. This appears to have an impor-
tant effect at small S,,, since the transition probability
remains small until the energy exceeds the barrier height;
it then increases rapidly. For larger S,,, the excitation in-
side the barrier is appreciable; presumably, even in the
classically inaccessible region inside the barrier, the ex-
tent of inelastic coupling is large. In addition, at inter-
mediate energies P, decreases as the energy increases,
without a large decrease in 1 — P;; again this implies that
the higher excited states are taking amplitude from the
less excited as the energy increases. However, here this is
occurring as the inelastic potential strengths S,, decrease;
what is happening is that, as each new channel reverts
from closed to open as the energy increases, it steadily
begins to acquire its share of the scattering. Eventually,
the transition probabilities fall off at high energy, as the
decrease in § finally makes itself felt; the total inelastic
transition probability peaks at a larger energy than P;, be-
cause of the increase in S with increasing excitation.
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Fig. 2. Excitation probability Py, (solid line) and total inelastic excita-
tion probability 1 — Py, (dashed line) for &« =0.25, D =1 (o),
a=025,D=5(A), and a=1,D =5 (w). The two curves are not
resolved for &« = 0.25, D = 1 at this scale.

Finally, we note that the calculations also show that the
other inelastic transition probabilities display generally the
same type of behavior as shown by P,. At small «, Py,
remains the dominant term, but as this parameter in-
creases, a more excited transition may eventually domi-
nate. Note that this is not entirely a ‘‘ladder’’ effect,
since Eq. (14) supports direct excitation to all states.

IV. CONCLUSIONS

An analytic solution for an inelastic model scattering
system analogous to simple models of elastic scattering
has been presented. Sample calculations have shown that
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the properties of the system are similar to those of inelas-
tic systems with more realistic potentials.® The model is
thus a valid one from which the characteristic features of
inclastic systems can be deduced. In addition to possible
use as an elementary type of inelastic system, the model
and its solution are simple enough to possess pedagogical
utility in discussions of inelastic scattering. Not only can
certain formal aspects of inelastic systems, such as their
multistate nature, be explicitly seen, but the behavior of
results upon changes of the relevant parameters can be
investigated. Because the system is collinear, no informa-
tion about the angular dependence of inelastic scattering
probabilities can be determined; this is a regrettable as-
pect of the model, since such behavior is -often of consid-
erable interest.
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