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The quantum-mechanical solution for the biharmonic
oscillator is presented. This one-dimensional asymmetric
oscillator is described by the potential energy function
Vix) = mw,%/2, x > 0, and V(x) = mw,?/2, x < 0.
One of the more interesting features of the solution is
that the energy levels are very nearly equally spaced. The
biharmonic oscillator provides a relatively simple model for
systems which lack the symmetry of the harmonic oscil-
lator.

Of the models used in both classical and quantum
mechanics, the harmonic oscillator is probably more
widely employed than any other. The symmetry of the
potential energy function about its minimum is one of the
simplifying features of the harmonic oscillator. Yet this
symmetry is one which is seldom present in the physical
system for which the oscillator is the model. For exam-
ple, many real springs have different force constants for
extension and for compression from the equilibrium
length, and more realistic models of interatomic potentials
in solids, liquids, and gases use potential energy forms
which are not symmetric about the position of the
minimum. A relatively simple model which lacks this
symmetry would be valuable.

We consider here the quantum-mechanical solution of
the biharmonic oscillator—a harmonic oscillator in each
half-space. The oscillator frequency is w; for x >0 and
w, for x < 0. With a mass m and the usual step function
S(x), we have the potential energy function,

V=3mxYw 23S) + 0,2 (- x)). (1)

We have not found any mention of this problem in the
recent literature. Even if it has received attention in the
past, we think it worth reviving for a number of reasons,
including the following: The biharmonic oscillator has
pedagogic interest as a solvable quantum-mechanical
problem. Containing the harmonic oscillator as a special
case, it provides some insight into the solution of that
simpler case. From a practical standpoint, the biharmonic
oscillator may be used successfully as a better model for
many of those systems usually treated in a harmonic ap-
proximation. For example, the classical statistical ther-
modynamics of a linear chain of masses interacting via
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these biharmonic springs has been considered.! Such an
asymmetric interatomic potential leads quite naturally to
thermal expansion without the necessity for introducing
troublesome anharmonic corrections.

The quantum solution for the biharmonic oscillator is
obtained by solving the Schrodinger equation in each
half-space and matching the solutions at x = 0. In an ob-
vious notation, we have

d¥, [2mE mPwx%\, _
ol R T L
2 2)

dby (2mE  nitw,x?
w \me e A0

In each half-space, the customary change of variable
and substitution are made. So, forx > 0, we let

£=mw /M %, Pi()=exp(= 3 £2)F(E)
and

dgt ™

26 2ur-0. E-(us Doy @)

Similar expressions are obtained for x < 0. In particular,
the parameter v is the counterpart of u in expressing the
energy eigenvalue in terms of w, rather than ;. Thus,

v+ 3w, = (1 + 3w, 4)

and the dependence of w and v is determined by the ratio
of frequencies.

Continuing with the solution of the differential equation
for x > 0, we have from Eq. (3) and the variable change

z =& F@) =f¢)

AF ,  dF p .
zdzz+(2—z)dz+ F=0,

which is the confluent hypergeometric equation with in-
dependent solutions®

(Fi(-1/2, §32), 22 Fy(z - 1/2, $;2).  (5)

An arbitrary linear combination of these functions be-
comes unbounded as e* for large z. It is at this point for
the harmonic oscillator that the symmetry about x = 0 is
invoked since the first of the solutions in Eq. (5) contains
only even powers of x (z = mwwx?/f) and the second only
odd powers of x. Thus u is chosen to be an even or odd
integer, leading respectively to even or odd polynomials
inx.

For the biharmonic oscillator, this symmetry is absent
and the linear combination of the functions of Eq. (5)
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must be chosen so that a bounded solution is obtained for the wave function in the half-space x > 0. This linear

combination is2

r(%)1F1(— 1/2, %?mw1x2/h—) +I"(— %)(Wlw1/h—)“2x 1F1(% -

b/2, 3 ;mw (x2/7)

v b1 mwlxz)_
2’2 & I'(z-1/2)

I'(-u/2)

which behaves for large x as x*. The appropriate combination for the half-space x <0 is

vV 1 mw 9 x2
272’ 4 I'(z-v/2)

Attaching the exponential factors and a multiplicative
constant, we have then the solution of the Schroedinger
equation in each half-space,

D= AV (= 1/2, %, ma /R

X exp(— 2 mwx%/H), x>0
¢2=B\I’(_V/2: %’ mexz/ﬁ)
Xexp(- 3 muwyx’/H),  x<0. (6)

These solutions are simply related to the parabolic cylin-
der functions.??3

The energy eigenvalues are determined from a match in
value and slope of the solutions at x = 0, leading to

I'(z -u/2) __ (wz/‘*’ 1)1/21-‘(% -v/2)
(- 1/2) T(-v/2) ’

(v + 3w, = E= (1 + i, .

A more convenient form is obtained by using two gamma
function relations,?

I'z)T(1 -z)=mcsc(nz),

T(3+2)(3 —2)=wsec(nz).

The eigenvalues are determined then from the roots of

T\ T+ 1/2)  fw,\!/? )\ T(1+v/2)
t“"‘( ) *(ﬁ) tan ()‘f(zﬂ‘u )"

TG+1r/2)
(7)

with v = (u + %)w/w, —

Equation (7) admits the special solutions for the har-
monic oscillator with w; = wy, 4 = ¥ = n, a nonnega-
tive integer. Another special case is the half-oscillator,
obtained in the limit w,/w, —> . Then, u =1, 3, 5,
etc.

For the general biharmonic oscillator, we note that the
arguments of the gamma functions in Eq. (7) are non-
negative since £ = (u + %iw, = (v + %B)hw, must be
positive. Furthermore, the two tangent functions must
have opposite signs to yield a root. The roots must be ob-
tained by a numerical search, and for this purpose it is

Am. J. Phys. Vol. 43, No. 7, July 1975

1"(2) F(-v/2, 2,mo.)zxz/h’) I'(-3)mw,/B) /%  F (5 -v/2, 3;mw,x /h')

T'(-v/2)

convenient to take wy;>w;. Thus, u>v=(u
+ %)w,/w, — Y. The tangent functions require that the in-
teger portions of x and v differ by an odd integer,
—[v]=1,3,5,....A consistent search procedure can
then be developed by assigning to u trial values between
kand k + 1,k =0, 1, 2,..., calculating the trial
value of ¥ = (u + “%)w,/w, — % and ascertaining that
[] — [¥] is an odd integer with the further restriction
that v > — ' for a positive energy eigenvalue. For
example, with w, = 2w, and &k = 0, the maximum values
of # and v, respectively, are 0.5 and 0~ while the
minimum values in this range are 0 and —0.25, respec-
tively. So w must lie between O and 0.5. The actual value
for this ground state root is me=0.1786 (v,
= — 0.1607). In a similar way the first excited state root
value for u must lie between 1 and 2 with » between 0.25
and 0.75. The root values are u, = 1.4934, v, = 0.4967.
As another example of the search procedure, if we consider a
trial value of u between 3 and 4, the trial values of »
would lie between 1.25 and 1.75 and [u] — [¢] = 2,
not an odd integer. Thus, no root exists for u between 3
and 4.

The determination of the eigenvalues requires the
evaluation of gamma function values. These can be ob-
tained by using the property I'(z + 1) = zI'(z) repeatedly
and the asymptotic expansion?

InT'(z)=(z = 3)1n(z) - z + 3 In(27)

+271/12 - 273/360+275/1260 ++++, (8)
which is accurate to 1 part in 10® for z as small as 4.
By way of illustration, we display in Table I informa-

tion on the first few eigenvalues for the biharmonic oscil-
lator with w; = 1.5w;. Listed are a counting index n

Table 1. Energy level parameters for w, = 1.50,

n M Vn Mp+vp—2n
0 0.1038 —0.0975 0.0063
1 1.2974 0.6983 —0.0043
2 2.5014. 1.5009 0.0023
3 3.6994 2.2996 —0.0010
4 4.9002 3.1001 0.0003
5 6.1001 3.9001 0.0002
6 7.2998 4.6999 —0.0003
7 8.5002 5.5001 0.0003
8 9.6999 6.2999 —0.0002
9 10.9000 7.1000 0.0000
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b,  E, tnedyh,

—_— Fig. 1. The energy levels of the bihar-
_ — monic oscillator with w, = 1.5w, are

— shown in the center column. The levels
on the left are for a harmonic oscillator
— of frequency w,, while those on the
— right are for a harmonic oscillator of
_ frequency w,. The biharmonic oscillator
. levels are almost equally spaced.

Wy 21.50y

=0,1,2,...,the values of u, and v, and, for later pur-
poses, the value of u, + v, — 2n. The eigenvalue spec-
trum can be compared with that of a harmonic oscillator
of frequency w, and of frequency w, as shown in Fig. 1.
On the left is the spectrum for a harmonic oscillator of
frequency w;, and on the right that of frequency w,. The
center spectrum is for the biharmonic oscillator with these
frequencies. As is evident from the figure, the biharmonic
oscillator levels are nearly equally spaced.

In Table II and Fig. 2, we show the same kind of in-
formation for w, = 5w,;. Again the energy levels are al-
most equally spaced. An interesting feature occurs for this
frequency ratio of 5:1. Certain biharmonic oscillator
levels coincide exactly with appropriate levels of the re-
spective harmonic oscillators. This occurs only when the
frequencies are in the ratio of two odd integers and cor-
responds to integer root values for wu and v such that

(h+ 3wy = +3)w,
or

wy/wi=C2u+1)/v+1),

and Eq. (7) is satisfied by having both tangent functions
(or their reciprocals) vanishing.

Wave functions for the biharmonic oscillator have just
the appearance one would expect for an asymmetric po-
tential well. In Figs. 3 and 4 are shown respectively, the
ground state and sixth excited state wave functions for a
frequency ratio of 5:1. Also superimposed in each of
these drawings is a plot of the potential energy function.

We return now to the observation that the energy levels
for the biharmonic oscillator are very nearly equally
spaced for any frequency ratio. This result is reflected in
Tables I and II in the approximate equality, wu, + v,

Table II. Energy level parameters for w; = Sw,.

n Hn Va Mp+ V= 2n
0 0.4053 —0.3189 0.0864
1 2.0000 0.0000 0.0000
2 3.6536 0.3307 -0.0157
3 5.3257 0.6651 —0.0092
4 7.0000 1.0000 0.0000
5 8.6702 1.3340 0.0042
6 10.3360 1.6672 0.0032
7 12.0000 2.0000 0.0000
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(o, En

Fig. 2. The energy levels of the bihar-
— monic oscillator with w, = 5w, are

shown in the center column. The levels

on the left are for a harmonic oscillator
J— of frequency w,, while those on the
right are for a harmonic oscillator of
. frequency w,. Since wy/w, = 5/1, there
is a coincidence of certain levels across
— the three columns.

=~2n,n=0,1,2,....To see this, we write
K+v,=2(n+4,),

with A, indicating the necessary correction term, assumed
to be small. In addition, we have

En = (u'n + %)h—wi = (Vn+ }é)ﬁwZ)

and these two equations can be solved for u, and v,. The
result for the energy eigenvalue of the state labeled by n is

E,=(n+3+A,)20,w,/(0+w,). 9)

To the extent then that A, can be neglected, the level
spacing is the same as that of a harmonic oscillator of
frequency @ = 2w,04/(w; + @5).

It is not obvious at this point, however, that A, must
be small. The result follows from the eigenvalue root
equation, Eq. (7), and an interesting property of the
gamma function ratios in that expression. Again we write
for the state labeled by n,

B,+v,=2(n+4,),
or

v,=2(n+4,) - H,.
Then, in Eq. (7),

tan(mv,/2)= - tan(ru,/2 - 74,).

to
0z=50
éMU:Xi‘ /*Mulzxz
Fig. 3. The ground state biharmonic
oscillator wave function is shown for
®; = 5w,. Also shown is the potential
X energy function arbitrarily displaced

downward.
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Fig. 4. The sixth excited state wave
function of the biharmonic oscillator is
shown for wy, = Sw,. Also shown is the
potential energy function arbitrarily- dis- X
placed downward.

Also,

T+ u,/2)=T[3+ (1, +3)/2],
LG+ 1,/2) =T[5+ (1, +3)/2],
T'(1+v,/2)=T[}+ v, +3)/2],
TG+v,/2)=T[t+@,+3)/2].

Equation (7) can now be rewritten as

tan (zr_&n) _T[3+ (v, +3)/2IT0 + (1,4 3)/2]
2 ) T+ @,+5)/2]0[F + (1, +32)/2]

1/2
X (22-) tan (ﬂiﬂ - 1rA,,).
W1 2

The ratios of gamma functions in the above expression
are of the form,

(10)

TG+2)/TE+2).

If z is large, an asymptotic expression for this ratio can
be developed from Eq. (8). To terms of order z 8,

[ +2)/T(3+2)=(2)"/*exp(e-¥/64-192"4/8192 + ¢+ +),

In fact, calculation shows that this ratio of gamma func-
tions differs from z'2 by 1% or less for z as small as 1.2
and by less than 5% forz = 0.5.

Applying this expression to order z 2 to the ratios in
Eq. (10), we obtain

tan(rp,/2) = [(v,+ 3w/ (1, + )w;]' /2
Xexp{[(wa+ ) = (1,+%)2]/16}
Xtan(n'u."/z—ﬂA"). (11)

The first factor on the right-hand side of Eq. (11) is unity
since (v, + “)w, = E,/h = (u, + ¥%)w,. So, for suffi-
ciently large values of u, and v,, A, is very small. A
first-order expression for A, obtained from Eq. (11) is

tan(rit,/2)

TA, =W W,y — w %) SR
I 1)(Nn+§)2 ,
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for u, not close to an odd integer. The sign of A, is then
the same as that of the tangent function, tan(mu,/2), as
inspection of Tables I and II shows.

The above analysis is based on the use of asymptotic
expansions, that is, w, and v, (or n) large. They appear
to be valid, however, even for n = 1 for reasonable fre-
quency ratios.

Another indication of nearly equally spaced levels can
be obtained by applying the Bohr-Sommerfeld quantiza-
tion rule to the biharmonic oscillator. The evaluation of the
integral

fpdx=nh,

is straightforward and leads to the uniformly spaced spec-
trum,

E, =n2ww,/(w;+w,),

which should be compared with Eq. (9).

An interesting sidelight of the biharmonic oscillator
model deals with the familiar Einstein model of the lattice
contribution to the specific heat capacity of a solid. The
Einstein model is usually invoked after the harmonic ap-
proximation has been made; that is, a collection of har-
monic oscillators of frequency w is considered. All that is
needed for the calculation, however, is the equal spacing
of oscillator energy levels. One can also consider a col-
lection of biharmonic oscillators with frequencies w; and
w;. To the extent that the A, can be neglected, the
biharmonic energy levels are given by

E =n+3)iw, n=0,1,2,...,

with w = 2w,w./(w, + w,), and the partition sum,
2 exp(~BE,),
n

can be evaluated. Thus the success of the Einstein model
is not necessarily connected with the validity of the har-
monic approximation.

Other features of the biharmonic oscillator model can
be developed. For example, matrix elements of interest
can be evaluated numerically; dipole selection rules are
different from those of the harmonic oscillator; perturba-
tion schemes may be considered. The biharmonic oscil-
lator may then be a valuable addition to the collection of
exactly solvable models for quantum-mechanical systems.

'H. W. Graben and W. Edward Gettys (unpublished).

*Higher Transcendental Functions, edited by A. Erdelyi (McGraw-Hill,
New York, 1953), Vol. L.

#The parabolic cylinder function has been used in the treatment of the
double oscillator; see E. Merzbacher, Quantum Mechanics (Wiley,
New York, 1970), 2nd ed.
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