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On the Isotropic Oscillator and the Hydrogenic
Atom in Classical and Quantum Mechanics
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(Received 26 February 1974; revised 7 May 1974)

It is shown how one may stmply assoctate the problem
of the tsotropic oscillator to that of the hydrogenic atom
in classical dynamics, particularly in its aclion-angle
variable formulation, so that the solution of the one prob-
lem implies that of the other. This relationship perstists
in the two-dimenstonal quantum mechanics and provides
the key to the comstruction of a wave packet solution for
the isotropic oscillator in the region of large principal
quantum number in three dimensions.

It is customary in expositions of the later
developments of classical dynamics (such as
action-angle variables'?) and in discussions of
the early quantum theory,® first to work out the
solution of the one-dimensional harmonic oscil-
lator and then that of a more complex problem,
typically the Kepler problem in three dimensions.
The elaborate theoretical apparatus required to
discuss, say, the hydrogen atom, serves to dis-
courage the analogous treatment of other dy-
namical systems in more than one dimension,
and one soon discovers that there are not many
of these of equal pedagogical value. Thus, it may
be of some interest to show that the hydrogenic
atom and the isotropic oscillator are simply re-
lated in classical dynamics and that both these
fundamental three-dimensional problems may be
solved simultaneously there with little additional
effort. (In the process, we confirm the basic
geometric intuition that since the classical orbits

of the bound Kepler problem and the harmonic
oscillator are ellipses, there should exist a trans-
formation between these two problems.*) Sur-
prisingly, one finds that this relationship persists
in the two-dimensional quantum mechanics as
well. In three dimensions, the now approximate
connection still provides the key to a wave-
packet solution for the isotropic oscillator in the
region of large principal quantum number. Such
a wave-packet follows the classical circular orbit
as in the analogous construction recently given
by Brown? for the hydrogen atom.

We remind the reader that the solution to the
problem of the hydrogenic atom in three dimen-
sions requires the introduction of the action vari-
ables J; (i=r, 8, ¢):

Jo= & psde, (1a)

Jo= & pdb= & (p*—p,*/sin®)"*df, (1b)

Jo= & (=2m| E| +2mZet/r—p*/r*)Vdr; (lc)
where p is the magnitude of the total angular
momentum of the planar bound orbital motion.

[That motion is alternatively treated by dealing
with the Hamiltonian in plane polar coordinates,®

3(p; Po; &, P) = (1/2m) (p,*+1*/0*) —2€/p, (2)
introducing the appropriate action variables, J,,
Jy=2mp.] From Eq. (1b) one deduces that Jj is

a homogeneous function of p, p, of first degree,
ie.,

pdJs/dp+psdJs/dps=Js;

indeed, one has

p=(Jo+Js)/2m, (3)
by explicit integration.” The integral involved in
Eq. (1¢) is evaluated by elementary means or by

application of the residue theorem,® so that we
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have
K=FE=—-2mmZ%/ (J+Jo+J )2 (4)
To simplify matters, we restrict our discussion
now to the motion in the orbital plane (p, ¢),
where (J,—J,),
E=—-2r'mZ%/[J,+p/2% 2 (5)

Under the coordinate transformation given by

p=u? (6a)
¢=2¢, (6b)
an ellipse of the bound motion of the planetary

electron with semimajor [semiminor] axis a[b],
given by

1 a—(a*—b*)"2cosg
o - b2 ’ (7)
goes into the ellipse,®
X y?
a+ (a2—b?)11 + a— (a2—b2)1z 1L, (8
where
X =u cosy, (9a)
Y =u siny. (9b)

At the same time, via the generating function of
the “third type,” !

—F3(p, u) =p,u? cos2¢+p,2u? sin2y¢, (10)

with its associated equations of transformation,

= —0F3/0p,=u? cos2y, (11a)
= —9F;/0p, =u? sin2y, (11b)

Du= —3F3/0u=2u(p, cos2y~+p, sin2y)
=2up,, (12a)

Py=—3F 3/ 3y =2u?(py cos2¢Y—p, sin2y)
=2p, (12b)
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one obtains for the new Hamiltonian 3¢,

3 (u, pu; ¥, Dy)
= (1/2m) (pu*/4u?+py?/dut) — Ze*/u?
=—|E|. (13)

In the transformed theory,?®

- Jy= & pudy=2mp,=2J,, (14a)
Ju= & pudu
= & (8mZer—8m | E | ut—py2/u?)Vidu=2J,.
(14b)

Thus we are dealing there with the action vari-
ables for an isotropic harmonic oscillator with
(positive) energy e=4Ze?, spring constant k=
8 | E |, and angular momentum py. Since, in the
case of the isotropic oscillator,

e=4Zet= (J,+Jy)v, (15)
lWhere
y=7"(2| E[/m)"", (16)
one finds,
2w*mZ2%et
Bl =-———7—. 17
Bl =T ez (1)

In the two-dimensional quantum mechanics,
the bound state eigenvalue problem of the hydro-
genic atom,

[— (B2/2m) (8*/92*+8%/0y*) —Ze*/p W=~ | E | ¥,
(18)
may be solved through the introduction of para-
bolic coordinates in the plane,
£=2X?=p-uz, (19a)
n=2Y?=p—uz, (19b)
with
Vama(§, 1) =ful (| E )]0 [ (| E )]
X exp[—§(¢+0) (| E)V2],
(nly n2=0; 1’ "') (20)



where the functions f,(z) can be identified" with
Hermite polynomials of even order,

Ja(x) =3Ce0 (2'2), (21)

and
| E | =mZ%'/72(m+m+3)™ (22)
This solution [Egs. (19)-(22) ] suggests a direct
transformation of the Schrodinger equation (18)

into one for an equivalent two-dimensional oscil-
lator. This is given by

z=X?-Y? (23a)
y=2XY (23b)

using (6a, b) and (9a, b) with (z, ¥) = (p cose,
psing). The transformed eigenvalue problem is

[— (B2/2m) (8%/0X2+9%/3Y?)
4| B| (XY W=4Zey; (24)

or, in a more conventional guise (after the scale
transformation),

(| EDV3(Xi+Y7) = (X'4+Y'7),
[— (7*/2m) (8*/9X"*+8%/0Y ")
+4(X2+-Y™) W' =[4Ze*/(| E|)'* W', (25)
with eigenvalues,
e=4Ze*/(| E )= (2m+2n,+1)%(8/m)2, (26)

so that the result of Eq. (22) again emerges.
Recently a wave-packet solution for a system
of a hydrogenlike character which follows the
corresponding classical circular orbit was con-
structed by Brown.® In that construction, one
was motivated to try a radial function of the form
Un1 (1) = (const.)r* exp (—kur), (27)
in the radial equation

{—(a¥/dr?) +[1(1+1) /7]
— (2m/72) (Ze/r) + kni2}uni(r) =0. (28)

Although our earlier connection between hydro-

Isotropic Oscillator and Hydrogenic Altom

genic atom and isotropic oscillator breaks down
in three dimensions,* there is the possibility that
the analogous construction in the case of the
isotropic oscillator may follow from the introduc-
tion of a trial radial function

vn1(r) = (const.) (12) "2 exp[— (1/2%) (mk)1*2],

(29)
in the corrésponding oscillator radial equation

{— (a¥/dr) +[1(1+1) /r*]
+ (2m/72) (kr2/2) —Ba2}vni(r) =0. (30)

Our motivation stems from the fact that in the
limit of large n, I (n~~l), the radial equation and
radial function w,; for the hydrogenic atom go
over into the oscillator radial equation and radial
function v,; under the substitutions,

r—rl,

-l/2,

n—n/2,

(8m/#2) Ze*—B.12,
K,,,¢2—>7nk/ 472,

Indeed, »,;(r) is a solution of Eq. (30) provided
n=Il+1, and B.2=(2/%)(4+3/2) (mk)V2, Thus
E,=#w(l143/2), with (proceeding as in Ref. 5),
Yur*®(r) =const. exp{ —[I¥?— (r/a) }}}

X exp(il¢) exp[—3(6—37)%], (31)
where a= (%/mw)Y? is the characteristic length
for the harmonic oscillator. As in the case of the
hydrogenic atom, one finds the wavefunction
peaked along the circle r=r,=I["%a and with a

width Ar~i-%?r, On the other hand, since we
have

9B/l [y =0, (32)

there is no spreading in this case.
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? More concisely, in terms of the complex variable z,
one finds under the transformation,

z=p exp(i$) —¢*=[u exp() I,
that the ellipse of Eq. (7),
| 2|+ 2—2(a*— b)) | =20
goes into the trajectory,
| £2 |+ $2—2(a2—b)2 | =2a,
which is another version of the “standard” ellipse,

[t—7 |+ ¢+7 =20,
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rewritten in the form,
[ B] =22 | =2a—%2,
with the square of the focal separation,
(@)1=8(@—b),
and the square of the semimajor axis,
at=g+4 (a2 b1z,

1 From Eq. (12b) we deduce that two cycles of motion
in the (p, ¢) plane correspond to one cycle of motion in
the (u, ¥) plane. .

1 In the present context, in two dimensions, the radial
equation for the hydrogenic bound states,

2’mpdppdp 2mp? p BT

goes over into the radial oscillator equation,

_2mp dppa T 2mp?

l1d d h2le
( — 4Ze2+4| E lp’>Pm(p’)=O,

under the transformation p—p?, [—1/2, with e=4Z¢? and
v=(2| E |/m)"2xr' as we obtained earlier classically.
However, no such relationship follows from the analogous
substitution r—r2, [—1/2, in the three-dimensional radial
hydrogenic equation,

w14 ,d  FAIl+D

+ B 1-Z2)Ritr) =0
—_ = _— r)=0.
2mr’drrdr 2mr? r !



