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The Quantum Bouncer

R. L. GIBBS

Department of Physics

Louztsiana Tech University

Ruston, Louisiana 71270

(Received 9 January 1974; revised 1 April 1974)

Ezamples in one and two dimenstons for motion in a
uniform gravitational field are considered quantum
mechanically. The examples of bouncing in one dimen-
ston and sliding down an incline are proposed for use as
conceptual atds in an tntroductory course.

I. INTRODUCTION

In the first course of Modern Physics, we seek
to give the student as clear as possible an under-
standing of the role of ¥*¥. In the early stages the
free particle example may not be a good one for
this purpose as ¥*¥ is not normalized in the usual
fashion. The common remedy is to use the particle-
in-the-box example to illustrate the probability
distributions. The harmonic oscillator and hydro-
gen atom are, of course, excellent conceptual
models but require the usual mathematical de-
tours which sometimes become cumbersome at
this level. Thus, one may concentrate on the
particle-in-the-box to make sure all the salient
points of the quantum theory are pointed out
before proceeding to the next stages.

Students are apt to ask about quantum theory
applied to the standard elementary mechanics
problems even though the instructor has taken
pains to map out the areas in which quantum
theory applies. Instead of giving standard answers,
two related problems can be presented which are
quite easily visualized. First, consider a point
mass which would fall due to gravity and bounce
off a flat surface with no loss of kinetic energy
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(coefficient of restitution B=1). (This was called
the quantum bouncer since we would use the
Schrodinger equation to describe the dynamics.)
The inclined plane can then be discussed by
utilizing an incline with a reflecting surface per-
pendicular to and at the bottom of the incline.
The new two-dimensional problem is still mathe-
matically tractable and presents an interesting
situation for a discussion of the correspondence
principle.

I would propose that these problems follow
the particle-in-the-box problems in the beginning
course because they are good conceptual models
for the student and the amusement derived pro-
vides a good spiritual lift. For these reasons the
problems are outlined below.

II. ONE-DIMENSIONAL QUANTUM BOUNCER

The potential energy of a point mass, m, a
distance y above the ground is given as mgy.
When placed in the time-independent Schrédinger
equation

[— (72/2m) (@?/dy*) +V (y) —ET¥(y) =0, (1)

where

mgy  y>0
V(y) =
® y=0,

one can proceed in the unusual manner to get
¥ and E. It is a simple matter to scale and
transform Eq. (1) to the Airy equation

(d*/dz?—2z) ¥ (x) =0. 2

This is accomplished by defining y=E/mg-+lx
where a characteristic length, I, may be defined as

1= (A2/2m2g) 13,
The boundary conditions on y translate as follows:

V(y=0)=0=¥(z=—E/mgl),
¥(y=0)=0="(z=x).
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Fie. 1. Airy function vs z. The distance from =0 to
nodal points n=1, 2, 3, ... represents the eigenvalue.
Each eigenfunction is represented by the curve starting
at the appropriate nodal point.

The solution to (2) is!
¥ (x) =adi(x)+bBi(z).

The second boundary condition requires b=0
since Bi(x) shows unbounded growth with in-
creasing 2. The value of a is found from the
normalization of the Airy function A:(z). The
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Fic. 2. Energy levels for n=1-10 in units of mgl.
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eigenvalue spectrum is obtained from the first
boundary condition. It is very convenient for
presentation purposes that only one table or plot
of Ai(x) is required compared to the situation
where different polynomials are required for dif-
ferent values of E.

Figure 1 shows a plot of ¥(z) which can be
used for the form of all the wavefunctions by
picking the appropriate nodal point for ¥=0.
The distance from z=0 to the nth nodal point z,,
is directly proportional to the energy of the nth
state since -

Zn=—E/mgl.

Thus, the energy level spacings are easily visual-
ized by observing the node spacings of ¥. Refer-

T V=mgy -] V=

Ve _ o

Fie. 3. Coordinates and potential energy for incline.

ence (1) shows a plot of Ai(x), gives tables for
Ai(x) and the first few zeros of A¢(z). We have
used Ref. (1) to produce the energy-level diagram
in Fig. 2. It could also be obtained by using a
good metric ruler from a plot of ¥.

A similar scaling can be utilized in the particle-
in-the-box problem to obtain a universal ¥. How-
ever, the nodal points are not directly related to
the energy level spacings as in this problem.

III. QUANTUM BOUNCER AND THE
INCLINED PLANE

Figure 3 shows the arrangement to be consid-
ered in this section. The incline and stop at the
end of the incline are considered as perfectly
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Fi6. 4. Energy levels for the incline vs incline angle. The pairs of numbers (k, I) indentify the eigen energy state.

reflecting surfaces. We solve the quantum prob-
lem with the indicated potential by rotating axes
80 that s=1y cosf+z sinf and t= —z cosf~+y sind.
Now, this results in V2 becoming 8%/ds?+ 9%/
and V becomes « if {=0 or s=0, otherwise V
becomes mg(s cosf+¢sind). By defining E=
E,+E, performing a separation of variables,
defining

l,= (fi2/2m3g cosd) 13,

+= (h2/2m?g sind) /3,

and scaling (u=E,/myg cosf+I1s, v=E,/mg sinf+

lit), one finds
T=A7(u)Az(v).

The energies are found as in Sec. II by locating
the zeroes of the Airy functions by setting
Ai(ug) =0 and A< (v;) =0. Then, E,= (mgl, sinf) v,
and E, = (mgl, cos8) u for the (kl)th eigen energy.
Figure 4 shows some of lower energy levels for
various incline angles. The resulting symmetry
at 8=0° 45° 90° is evident in Fig. 4 from the

level degeneracies which are shown explicitly for
the (1, 2) and (2, 1) levels. :

IV. DISCUSSION

The results of Sec. II may be used to get ¥*¥
and discuss the meaning of the probability distri-
bution. This is facilitated by the result that
E,=mglr,; since, lx, is the classical height a
particle with mass m and energy E, would bounce
(I being the scale factor for distance units). The
classical height is represented in Fig. 1 by the
node-origin separation and always occurs at z=0
due to the choice of scale.

The results from Sec. III show the same fea-
tures in two dimensions for ¥*¥. Now, however,
the concept of sliding is not clear due to the
nonzero energy of motion in the normal direction.
However, we resolve the problem by noting that
the size of the scale factor ~ (A2/2m2g)® is so
small that detecting the difference between sliding
and the actual motion down the incline is not
possible. Not only is this expected by the Bohr
correspondence principle but it also shows the
basic reason for the absence of quantum-gravita-
tional effects in our surroundings due to the
smallness of g.
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The examples are good for showing the connec-
tion between wavefunction nodes and energy.
The two dimensional example is also very good
for illustrating how each degree of freedom per-
mits a new quantum number. Extending further,
one can see how to solve quite readily the problem
of noninteracting systems by using the analogy

TRUTH FROM CONFUSION

between a degree of freedom and one of the sys-
tems under study.

! Handbook of Mathematical Functions, NBS-AMS 55
(1970), p. 446. May be obtained from Superintendent of
Documents, U.S. Government Printing Office, Washington,
DC 20402 for $9.00.

If a new idea were to be admitted only when it bad definitely proved its
justification or even if we merely demanded that it must bave a clear
and definite meaning at the outset, then such a demand might gravely
bamper the progress of science. We must never forget that ideas devoid
of a clear meaning frequently gave the strongest impulse to the further
development of science. The idea. . .of perpetual motion gave rise to an
intelligent comprebension of energy; the idea of the absolute velocity
of the earth gave rise to the theory of relativity; and the idea that the
electronic movement resembled that of the planets was the origin of
atomic physics. These are indisputable facts, and they give rise to thougbt,
for they show clearly that in science or elsewbere fortune favors the

brave.

28 / January 1975

—Max Planck



