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Calculation of a bound state wavefunction using free state

wavefunctions only

K. R. Brownstein
Department of Physics
University of Maine
Orono, Maine 04475
(Received 17 April 1974)

A pedagogical example is presented in which the
completeness of the free state wavefunctions of a Hamil-
tonian can be explicitly checked. For certain values of
the potential strength the free states prove to be com-
plete. For other values of the potential strength the free
states are shown to be incomplete and the extent of this
incompleteness is shown to consist of precisely one func-
tion. Using the fact that the totality of all energy
eigenfunctions must be complete, this single bound state
wavefunction is calculated using the free state wavefunc-
tions only.

INTRODUCTION

The eigenfunctions of a Hamiltonian-H, when properly
normalized, form a complete orthomormal set of func-
tions. Thus the quantum mechanical system possesses
bound states if and only if the free states form an incom-
plete set. In particular it may be that the free states lack
completeness by only one function. Using the fact that
the totality of all energy eigenfunctions (both free and
bound) is complete, it should then be possible to calculate
the one bound state wavefunctian from a knowledge of
the free state wavefunctions only. The purpose of this ar-
ticle is to present a concrete pedagogical example of such
a calculation.

ORTHONORMALITY AND COMPLETENESS
Consider 2 one dimensional Hamiltonian of the form
H=-3(d*/dx?*) + V(x) (1)
where the potential V(x) is assumed to vanish for

x —> * o, The energy eigenfunctions y)(x) satisfy
Hys = E{s and fall into two categories:

bound states ¥z'(x)with E <0;

¥, x) with & = (2E)'/% > 0.

(2a)

free states (2b)

Here the index i is used to distinguish between possible
degenerate eigenfunctions. For the particular Hamiltonian
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(1) it turns out that the bound states are all nondegenerate
(hence the index i is really unnecessary) while the free
states are all doubly degenerate. Use of the label k rather
than E for the free states is merely a matter of conveni-
ence.

The orthonormality relation for the eigenfunctions (2)
is

f_: bget (x)dx= 6;,0er for bound states
(3a)

f_:iﬁki(x)ﬁbk‘i'(x)dx?ﬁﬁé(k -k
for free states, (3b)

where the overbar indicates complex conjugation. As
usual, one uses the Kronecker delta for discrete indices
and the Dirac delta for continuous indices. The complete-
ness relation for the eigenfunctions (2) is ‘

S 3 B0 st T ) by (e k=

i E<0

6x -x'). (4)

Now consider the case in which the system possesses
only one bound state. Assuming that the integrations in
Eq. (4) involving the free states can actually be carried
out (!), one can solve Eq. (4) for the normalized bound-
state wave function (uniquely to within a phase factor of
magnitude one). This is the calculation that will be illus-
trated in the example below.

FREE STATE WAVE FUNCTIONS

The potential chosen for this example is that of a Dirac
delta function located at x =0,

V{x)= Vob(x) (5)

where the strength ¥, may be positive or negative. As is
well known the effect of such a potential is to make

satisfy

-z (d%/dx*) = Epfor x+0 (6a)

and to impose the following matching conditions at
x =0:

P(x) is continuous (6b)

al _a&

- 6
dx los dx lp- (6c)

=2V, 4(0).

The discontinuity (6¢c) in the slope of ¥ at x =0 is ob-
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tained by integrating Hys = Ey in a small neighborhood
ofx =0

Rather than using the standard scattering boundary
conditions (i.e., waves incident from either
X = —oor x = + o), it is more convenient to demand
that the energy eigenfunctions have definite parity. This
is possible since the potential ¥(x) is an even function of
x. These simultaneous eigenfunctions of energy and parity
are

D0(x) =7 sinkx (Ta)
Vi) = Vo=t (R4 v 2)-1/2
x [sink|x|+@®/Vy)sink|x|] (D)

where k = (2E)!?. Here the index i of Eq. (2b) takes on
the values i =o (odd parity state) and i =e (even parity
state). Direct substitution shows that these obey the re-
quirements (6). Further, these eigenfunctions (7) have
been scaled in order to satisfy the normalization condition
(3b). See the Appendix for some details concerning in-
tegrals used in normalizing these functions.

It is interesting to note that the odd parity wave func-
tions (7a) are not affected at all by the presence of the
potential. As for the even parity states (7b), for Vo — 0
one obtains 772 cos klxl while for V, — = o the result
is 7 ~'7 sin k|x|; both these limiting cases are seen to be
similar to the odd parity wave function (7a) with regard
to the normalization constant.

COMPLETENESS INTEGRALS

In this section the contribution

3 fo D ), H(x) dle (8)

i=o,e

of the free states to the completeness relation (4) will be
calculated. The odd-parity free states contribute the fol-
lowing to (8):

'/-Q ‘jk"(x)d)ko(x’)dk=%f sin kx sinkx’ dk
0
0

“dolemx) = Foleax). @)

(In passing it may be noted that when operating on an ar-
bitrary odd function of x, Eq. (9) reduces to &x —x').
Thus the odd-parity free states are complete insofar as
odd-parity functions are concerned; consequently, there
can be no odd-parity bound states. Since the bound states
must alternate in parity with the lowest energy state being
even, one can conclude at this point that the number of
bound states must simply be either zero or one.)
The contribution of the even-parity free states to (8) is
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/ 2 (0) B2 (c?) dle

0

_Vo2 1 . k
- '[0 g (sinklx| 7 cosklxl)
x(sinklx’ l+—é.— coslx’1)dkp. (10)
0

Using some trigonometric identities Eq. (10) can be de-
composed into the sum of the following three terms;

1 o0
;/ cosklx| cosklx'| dk (11a)
0
VP (71
—T A m Ccos [/€(|X|+!X’| ]d/» (llb)

Vo [Tk
4] ; ;
+ ‘IT'/O‘ m sm[/e(lxl+lx'l)]d/c. (llc)

The integral (11a) is 36(| x|

= lx'1y+56(xl+1x*)
which is the same as

36 —x")+36(x+x) (12a)
regardless of the signs of x and x’ (including the case
x’ =0). The remaining two integrals (11b,c) can be
evaluated using conventional contour integration tech-
niques in the complex k plane. Briefly the procedure is:

(a) replace fow ()dk by 3 f_ :()dk
integrand is even in k;

(b) write sine or cosine in exponential form;

(c) complete the contour for each such term with a
semi-circular path in the appropriate upper or lower half-
plane.

since the

Note that the po]es of all the integrands are located at
k== ]V |l It is precisely at this pomt in the calcula-
tion that the sign of V, enters. This is important since it
will turn out that a bound state exists only for positive
V,. The result for (11b) is

-3 Vylexp[= Vol (Ixl+lx’1)] (12b)
and similarly the result for (11c) is
+3Vpexp[- 1 Vol (Ixl+1x1)]. (12¢)

Collecting the sum of (12a,b,c) the contribution of the
free states to the completeness relation (8) becomes

P f pki(x) Zpki(xl)dk

i=0se

=6 —x") =3 (IVyl = Vy)exp[- | Vol (Ixl+]1x1)].
(13)
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RESULTS

When the contribution of the free states (13) is substi-
tuted into the general completeness relation (4), one ob-
tains for the contribution of the bound states:

D) 75}3'(95) Z/)Ei(x')
i E<0

=z (IVol =Vo)exp [~ IVl (IxI+1x71)]  (14)
Inspection of (14) yields the following information:

(a) For ¥, > 0 the right hand side of (14) vanishes.
Thus the completeness of the free-state eigenfunctions has
been explicitly verified; there are no bound states.

(b) For VO < 0 Eq. (14) becomes

T 2 Up )Y (x") = 1 Vol exp[- | Vol (Ixl+1x71)].

i E<0

(15)

Although perhaps it is obvious! that this can only be
satisfied if there is precisely one bound state, an easy
way to prove this is to set x’ equal to x and then integrate
both sides of Eq. (15) from x = —® to x = + . Be-
cause the Yi/(x) are normalized, the left hand side inte-
grates to the number of bound states N,; the right hand
side integrates to unity. Thus N, =1, i.e., there is one
bound state. Also, from (15) the one bound state must
satisfy

Yex)= (Vo) 2exp(- 1 Vol Ix]) (16)

uniquely to within a phase factor of magnitude one. Di-
rect substitution shows that (16) satisfies not only the free
particle equation for x # 0 (6a) but also the two match-
ing conditions atx # 0 (6b,c) and that the bound state energy
eigenvalue E, is

(17)

Furthermore, the bound state wave function (16) appears
automatically with the correct normalization (3a). With
the inclusion of this one bound state, the completeness of
all (free and bound) energy eigenfunctions has been ex-
plicitly demonstrated.

It is to be emphasized that the above results (a) and (b)
were obtained from a knowledge of the free states only.

CONCLUSION

The question of the completeness of the set of energy
eigenfunctions is a confusing one to many beginning stu-
dents of quantum mechanics. Among the conceptual dif-
ficulties is the difference in the normalization used for the
free (continuum) states versus that used for the bound
(discrete) states. Usually, completeness is demonstrated at
most only for a free particle or a particle in a box. It is
hoped that the calculation presented in this article may be
of use in several ways:

(a) If one includes all the energy eigenfunctions, it
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furnishes a nontrivial example of a situation in which
completeness can be explicitly shown. Both the case of
no bound states (V, >0} and of a single bound state
(Vo <0) can be treated.

(b) For the case ¥, <0, it serves as an example in
which the free states can be shown to be incomplete and
the extent of this incompleteness can be shown to consist
of precisely one function. This missing function (the
bound state energy eigenfunction) can be uniquely deter-
mined by answering the question: ‘‘What single function
must be added to the free-state energy eigenfunctions so
as to obtain a complete orthonormal set of functions?”’

(c) In the evaluation of some of the completeness in- -
tegrals, one is led to use contour integration in the com-
plex k plane. At this point the student might be intro-
duced to the concept that the poles of the scattering am-
plitude are related to the bound state energy eigenvalues.

APPENDIX

In order to carry out the normalization of the free-state
wave functions it is necessary to evaluate certain integrals
that are improper in the ordinary sense. These are

1, kg)zf sin(kx) sin(kzx)dx=% 50k, - ky),
0
k1 5 kz > 0, (Al)

J(ky, ky) E/ cos(kx) cos(kyx) dx =%6(k1 - ky),
0

ky,ky>0; (A2)
Ky, k)= [ [ysin(ee) cos et
0
+kysin(kyx) cos(kyx)jdx=0  (A3)

In each case themeaning is that f 0” () dx is to be replaced
byf0 b () dx and the limit as L — o is taken last. For
example, the meaning of (A1) is that for any ‘‘good’’ func-
tion f (k)

lim fowf(kl)dk1 foL sin(k,x) sin(kyx) dx = 3 w f(k,)
L (A4)

provided &, > 0.
To verify (Al),

'/0' 1y, ko) f(Ry) diy
~11im sinle; =kl (o ) e,
L= kl—kz

® sin(k1+k2)L
-A k1+k2 f(kl)dkl
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%0

=%1lim sm§
Lﬂw -kZL

—= flly+ £/L) d§
- f Sln’7f( ky+1/L)dn

e [ ﬂ‘—g—ds 0 =T stk

1l
[SES

(A5)

provided k;>0. Here the changes of variable
& =(k, —ky)/L and m = (k; + k,)/L have been used. The
integral (A2) is proved in much the same manner. As for
(A3), when the upper limit is replaced by L the integral

RUSTIC PHYSICS

becomes sin (2,L)sin(k;L).When this is multiplied by
any ‘‘good” function f{k,) and integrated with respect to
k, the result is zero in the limit L — oo,

To evaluate the odd parity free state contribution to the
completeness relation (9), one would use (Al) with the
roles of x and k interchanged. In addition, one would
have to allow the possibility of any sign of x and x’;
hence two delta functions emerge. Similarly, the integral
(11a) is based upon (A2) with the roles of x and k inter-
changed.

!Since the right hand side of Eq. (15) is explicitly a single product of a
function of x multiplied by (the complex conjugate of) the same function of

X .

For the past five years we have had a small weekend ranch in the coast ranges of

northern California, four miles from power lines, and dependent on springs for water.

Among the problems we faced, several seemed unusual to countrymen and to physicists

on the campus. We found that:

(1) Water will not always attain its own level: a spring will not always supply an
outlet at a substantially lower point even if all intermediate points are lower than the
spring. How can this be? Our outlet is 70 ft lower than a spring 2200 ft away, connected

by 3/4" PE pipe.

(2) A tank fed by a feeble spring (10 gal/h) can water a garden daily, vigorously,
automatically—with no moving parts or valves. It sprays 200 gal in 10 min. What is the
principle of operation? This is the principle of the classical vase of Tantalus and of the
fountains of ancient Corinth. Our vegetables love it.

(3) The cabin water is from a 160-gal pressure tank, and we draw down from 50 to
20 lbs. We get a larger drawdown (volume) with the tank at the cabin rather than 20 ft.
lower at the pump, for equal pressures at the cabin. Further, we can greatly increase the
drawdown by priming the tank with 20 lbs. of air before pumping in water. How do you

explain these observations?

(4) Our wood stove, like most country stoves, has the stovepipe too close to the
wall, with the risk that a lively fire in the stove will burn down the cabin. A black
aluminum sheet mounted 1" from the wall is a very good insulator for the stovepipe. A
shiny sheet is better. An asbestos backing is unnecessary, as well as unhealthy. Can you

account for these facts?

(5) A 2.5 kW generator (delivering 22 A maximum at 115 V is easily adequate for
family requirements, used 2 h/day with an auxiliary 12 V dc battery for lights. But even a
1/2 hp electric motor may need as much as 45 A to start, although it will subsequently
. run at 7 A. The starting current load can be lightened by putting a passive element across
the line. What circuit element and of what value?

None of the solutions is difficult.
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—Charles Kittel
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