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The non-relativistic energy spectrum for a negatively
charged particle in the field of a spherically symmetric
charge distribution is obtained. A complete solution is
found which includes a representation of the wavefunc-
tion exterior to the charge distribution. The energy
eigenvalues are found from the matching condition at
the boundary of the nucleus and the energy levels for
a mu meson in the field of a lead nucleus are cal-
culated.

I. INTRODUCTION

The distribution of positive charge in the nucleus has
negligible effect on the electron energy level structure of
hydrogen-like atoms. This is not true when a heavier par-
ticle, in particular a mu meson, finds itself in the pres-
ence of a heavy nucleus. The mu meson is about 210
times heavier than the electron and thus will find itself
closer to the positive charge distribution on the average; in
fact, in the 1s state, the meson has roughly a fifty percent
chance of being found within the charge distribution.
Since the energy levels are readily measured, the mu
meson can be used as a probe for examining the detailed
charge distritution in the nucleus. In recent years, this
experimental tool has yielded great quantities of informa-
tion about the structure of various nuclei.

The mu mesic atom has been subject to extensive
theoretical investigation,™® and complete relativistic
treatments of the problem are available for various charge
distributions. The aim of this paper is not to repeat these
solutions, but rather to examine the mu mesic atom in the
simple case of a uniform spherical charge distribution, by
means of the Schrodinger equation. Because the nucleus
is no longer represented by a point charge, the form of
the wave function on the interior of the charge distribu-
tion is different from that outside. The problem is
pedagogically interesting because the energy eigenvalues
are found from the condition that the wave function and
its derivative are continuous at the boundary of the nu-
cleus. This is a somewhat different development than is
usually encountered in the textbook treatment of the hy-
drogenic atom,* where the wave function is chosen to be
zero at the origin and forced to be zero at infinity.

Although a form for the wave function exterior to the
charge distribution can be found which is zero at infinity,
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it is rather difficult to express in the region of the bound-
ary of the nucleus. When the principal quantum number,
n, and the angular momentum quantum number, /, are re-
lated by n =1 + 1, the exterior wave function can be rep-
resented by an asymptotic expansion of the Whittaker
function.®® However, for n =[ + 1, the expansion fails
and another representation must be found.

The following sections present a complete solution to
the problem including the required representation of the
exterior wave function in the region of interest. The re-
sults are used to calculate the mu meson ground state
energies over values of atomic number between Z = 20
and Z = 92, and the character of these energies for small
and large values of nuclear radius is discussed. In addi-
tion, the mu mesic energy level structure for lead is cal-
culated.

I1. ANALYSIS
A. Solution of the Wave Equation

The potential energy of a negatively charged particle in
the field of a spherically symmetric charge distribution is
given by

(1a)
(1b)

and is shown in Fig. 1. Since the functional form of the
potential differs from the interior to the exterior of the nu-
cleus, the form of the Schrodinger equation

= (7*/2m)v 2+ V= By @)

will also differ in these regions. Consequently, the wave
function has different forms in these regions.

Because of spherical symmetry, the wave equation sepa-
rates into its radial and angular components as usual, and
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Fig. 1. The potential energy of a negatively charged particle in the field
of a uniform spherically symmetric charge distribution of radius R.
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we need only consider the differential equations for the
radial part.

B. Interior Solution

For r <R the radial component of the wave function is
found from

1d ,d, Ui+1) 3ze® ZéeM*
[72 a ) m E m

XR(r)=0 (3)

where the potential (la) has been ‘ substituted in Eq. (2).
Letting
w=m/H?,
== FE
p=(8en)! %,
A=(3Ze?/8€R)-1/4,
B =Ze? /64 R%?,

Eq. (3) becomes

(2 () [aobi- 001
4)

This equation has the same form as that of the three di-
mensional harmonic oscillator. Thus it is sensible to as-
sume solutions of that type:

R(p)=exp (- B°p?/2)t*/2V () (5)
where ¢ = p*@2. Putting Eq. (5) into Eq. (4) we get for V

V) +VIEI+3-t)+y V(E)=0
where

v=t {[(a/269-% - (1))}

The form of Eq. (5) is the same as that of the confluent
hypergeometric equation. The solution to this equation
which satisfies the requirement that the wave function be
finite at » = 0 is written

V(t)=1F1(—)’,l+%, t) (6)
where 1F1 can be expressed in series form as

(=72 (¥)(=r+1) £

(+H T+t

+(-Y)(-‘Y+ 1)ese(—v+u—1)
(L+3)1+3)eee(I+3+u—1)ul

1F1(-7’ l"'%’ t)=1+

+ oo

(M
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Fig. 2. A plot of Eq. (14) for/ = 0. As n increases, € becomes progres-
sively smaller. Between € = 1.3 (» = 3) and € = 0 there are an infinity
of roots. In the usual notation these energies would correspond to the
Is, 25, 1s, 25, . . ., ns levels.

It can be shown that this series converges for all values of ¢.
The solution to the radial part of the Schdedinger equa-
tion on the interior of the charge distribution is then

R(p)=Aexp (- B2 /2)(pB) Fi(=v, 1+3,p%%) (8)

where A is the normalization constant.

C. Exterior Solution

Substituting Eq. (I1b) into Eq. (2), the radial compo-
nent of the wave equation is

14 (,rzl> _Uir1) 2m (E+Z_e2)] R(r)=0.

vidr \' dr r? h r
9)
As before, we set p = (8ue)'/%r and k=Ze?(1/2)!/?
with E = — €. The wave equation becomes
1d(,d) UWi+l) k_, _
ot dp (P dp) T o +p -3| R(p)=0. (10)
Assuming a solution of the form
R(p)=p~'W(p), (11)
Eq. (10) becomes
Bool(I+1)+1
W' (p)+ |- 5+= -‘—pz'—“1 W(p)=0. (13)

Equation (12) is Whittaker’s differential equation. The
linearly independent solutions of this equation are written
Wim(p) and Wi-m(p), where m =1 + 1. Only the first of
these has the required property of vanishing at infinity.
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Fig. 3. The ground state energy levels of the mu meson as a function of
Z calculated from Eq. (14). For small values of Z, the ground state
energy can be estimated by the Bohr levels, Eq. (16). For large values
of Z it approaches the value estimated from Eq. (17).

Hence the radial part of the wave function exterior to the
charge distribution is

R(p)=BW, 4,1,:(p). (13)

The Wim are known as Whittaker functions. In order to
determine the energy eigenvalues, a suitable representa-
tion of this function at the boundary of the nucleus must
be found.

D. The Energy Eigenvalues

The energy eigenvalues for this system are obtained by
matching the logarithmic derivatives of the solutions
[Egs. (8) and (13)] at the boundary of the charge dis-
tribution. The matching condition is

20'}’32 1F1(1 =% Z+%; 9232)
l+% 1F1(—7,l+%,p252)

I+l
f(e)—p pB

W, ,.
W eety2 - 0.

r=R

W, eat 72 (14)

The roots of this transcendental equation will yield the
energy eigenvalues for the system.

When the radius of the charge distribution shrinks to
zero, the wave function and its derivative on the interior
go to zero. The complete wave function is then given by
Eq. (13), and must be zero at the origin. The solution
which meets this requirement is written

R(p)=p**lexp(-=p/2) Fi(I+1+F,21+2,p) (15)

which is the usual form of the hydrogenic wave function
in the field of a point charge. In order for it to be zero at
infinity, « must be an integer n, so that the series, ,F,,
terminates. The energy eigenvalues are obtained from:

k=n=(Ze*/M)n/2)"  or € =Z%*m /27%%, (16)
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which are the same as those obtained by the Bohr
theory. The quantity, n, is the principal quantum number.

As the radius of the charge distribution grows, a pro-
gressively larger portion of the wave function is contained
within the nuclear volume. In the limit of large radii, the
wave function is almost entirely within the nucleus and
can be represented by Eq. (8). The energy eigenvalues
are obtained by forcing this solution to be zero at infinity.
This requires that the parameter, y, be equal to an in-
teger, j. This gives the energy eigenvalues

e=3(2&*/R) - (Z&*/uR® )2 +3)  (17)

where n = 2j + 1. These eigenvalues are those of the
usual three dimensional harmonic oscillator whose energy
levels are displaced by a constant.

For intermediate radii of the extended nucleus, Eq. (14)
is used to obtain the energy spectrum and « is no longer
an integer. The energy eigenvalues can still be labeled by
the principal quantum number and associated with the or-
bital angular momentum quantum number, [, as in the
simpler system. The Whittaker function in Eq. (14) is
evaluated by means of the asymptotic expansion®

Wk,z+1/2(2)= exp[-— Z/z]zk x

1+_i (1+3) = (k=3P (I+3)-(k—n-%?] .

- nlz"
n=1 (18)
This form is only valid when
Re(k-1-1)<0 (19)
and
larg z| sma <. (20)

When [ =0, the energy eigenvalues are found by
choosing a sufficiently large value for €, and reducing it
until condition (14) is met. Only one eigenvalue is found,
for with smaller €, &k increases until condition (19) is vio-
lated. This root is assigned the principal quantum number
n = 1. For other values of /, roots are found in the same
manner corresponding to the principal quantum number
given by n =1 + 1. When n #! + 1, the above expan-
sion fails and another representation of the Whittaker
function must be used.

The required form, due to Hartree,? is written

Wy getyo=TR+1+1)(- ey %[ C,(z) cos Tk

+H,(z)sin7k] (21)

Table I. Energy levels for a mu meson in the field of a lead nucleus
MeV).

n =0 =1 =2
1 10.52

2 3.52 4.65

3 1.76 2.08 2.13

J. Zablotney



where

Go(z)=k* exp(-2/2) 22 Fi{(1+ 1~ 1), (2+210), 2]

TE+I1+1-mm!

and
22 T _ _
B o7 (eXp(-z/z)zMz-z B Ie-helmier)
5 (= )™ (k- 2"

metet D R+I+1=m)m! (m —2+1)! [zl)(m+1)+zl)(m—21—¢(k—l+1—m)]}

+(2L+ 1) ; E*lexp(- z/2) " F{(1+1-k), (2+21), zlogz] %)

where the s are the derivatives of the gamma function.
With this form, the complete energy level structure can
be extracted.

The roots for a given value of / can be obtained
graphically. A typical plot of f(e) is shown in Fig. 2 for
1 =0. The zeros of f(e€) are labeled by increasing values
of the principal quantum number for decreasing values of
the energy corresponding to roots of Eq. (14). Only the
first three principal quantum numbers are shown in the
plot. The remaining energy eigenvalues will be on the
energy axis between the origin and the dashed line which
denotes the asymptotic value of f{€) on the lower side of
the region bounding the third eigenvalue. Similar graphs
can be plotted for other values of / to complete the de-
termination of the energy spectrum.

The ground state energy levels for values of atomic
number, Z, between 20 and 92 are computed from Eq.
(14) using the techniques above. The radius of the charge
distribution in all cases is given by

R=1.24"3x10""¥ cm (22)

and the mass of the muon is taken to be 207 electron
masses. These energy values are plotted in Fig. 3 as a
function of Z and R/ap, where a, is the muonic Bohr
radius of an atom with charge Z. The extent to which
Egs. (16) and (17) approximate those ground state ener-
gies is also shown. The curve representing the energjes
extracted from Eq. (16) approach those obtained from Eq.
(14) for lower values of Z and R/a,. This implies that
most of the ground state wave function lies outside of the
charge distribution but within the Bohr radius, as in a
simple hydrogenic system. The ground state energies
given by Eq. (17) approach those of Eq. (14) for large
values of Z and R/ay, indicating that most of the wave
function lies within nuclear volume. This feature of the
energy level structure for heavy nuclei clearly suggests
that the mu meson can be used as a nuclear probe.

Table I. Transition energies for a mu meson in the field of a lead nu-
clues.

Energies
(MeV)
Transition Experimental Theoretical .
2p-1s 5.87 5.96
3d-2p 2.57 2.52

Am. J. Phys. Vol. 43, No. 2, February 1975

1. THE NONRELATIVISTIC MU MESIC ENERGY
LEVEL STRUCTURE FOR LEAD

The mu meson energy level structure for lead is ex-
tracted from Eq. (14). The mass of the mu meson is
again 207 electron masses, Z = 82, and the radius of the
charge distribution is given by Eq. (22) where 4 = 207
for lead. The roots of Eq. (14) are extracted by a compu-
ter aided search technique. The level structure is pre-
sented in Table I and transition energies are compared
with those experimentally observed in Table II: Agreement
is good.®*

A plot of Eq. (14) for / =0,1,2 is shown in Fig. 4.
For each value of /, the roots are labeled by increasing
values of n subject to the restrictionn > + 1. As a con-
sequence, the 2s level is greater than the 2p level. (Recall
that € = — E.) In the simple one electron hydrogenic sys-
tem, the reverse is true. Captured electrons are likely to
fall into the 2s state, which is metastable since parity

n=1
10p
8t
B
@
Z
g 9
-4
w
Z
wi
n=2
ir n=2
n=3 n=3
2k n=3 -
1 1 1
£=0 J=1 /=2

Fig. 4. The energy levels of a mu meson in the field of a lead nucleus.
The plot shows the zeros of f(e) for / = 0,1,2. Note that the 2p state
lies above the 1s state (since € = — E).
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considerations make the 2s—Is transition ‘‘forbidden.”’ In
the mesonic system, the meson has a very high probabil-
ity of cascading from the 2s to the 2p level and then into
the 1s state. Gamma rays corresponding to this transition
are easily detected and it is from these that a good deal of
information about the charge distribution is obtained.

When the nucleus is represented by a point charge, the
energies are degenerate with respect to the orbital angular
momentum quantum number /. The removal of this de-
generacy is due to the coupling of the spin-orbit angular
momenta in more detailed treatments of this system. It has
been shown that degeneracy is also removed for a particle
in the field of an extended nucleus. This can be under-
stood in terms of the perturbation calculation which de-
termines these energies for small values of Z. It is found
that the matrix element specifying the perturbation ener-
gies connects states of the point charge system of / and
[ + 2. Although these calculations are valid for small
values of Z only, the notion that the degeneracy is re-
moved due to coupling of the orbital angular momentum
via the charge distribution provides an explanation of
level splitting with intuitive appeal.

THE PAULI EFFECT
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The title “Pauli Effect” was given to the phenomenon that whenever
Pauli entered a laboratory, the apparatus broke or stopped working. The
physicist Ebrenfest said that be could reduce the Pauli effect to a more
general law, namely that one mishap never comes alone.

Once Pauli visited a laboratory in Milano, Italy. People there wanted to

make a little joke with bim and arranged a Pauli effect—they prepared it
so the moment the door opened, an electric contact was made which
would cause a little explosion and noise and many things would fall apart.
They arranged it all with great care. Pauli opened the door. Nothing

bappened.
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