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An alternate treatment of the Schridinger equation for a
charged particle tn @ uniform, constant electric field is
given. The time-varying field is then treated. Next, using a
Hamiltonian which gives the classical equations of motion
for a particle in a viscous medium subject to a uniform
constant, or time-varying field, the corresponding Schri-
dinger equation is solved. This procedure yields the classt-
cal electrical conductivily expressions for both dc and ac
Jields.

I. INTRODUCTION

While the solution of the Schriodinger equation
for a particle in a uniform, constant eclectrie field
has long been known,! the solution for a uniform
but time-varying field is less familiar. Further,
while the problem of dissipation has normally
been approached either via time-dependent per-
turbation theory or the ad hoc introduction of
relaxation times, the exact solution of the Schro-
dinger equation for Hamiltonians which classically
incorporate friction ab initio has only recently
been studied.?

We first give an alternate treatment of the
Schradinger equation for a charged particle in a
uniform, constant clectric field; then the time-
varying field is treated. Next, starting with a
Hamiltonian which gives the classical equations of
motion for a particle in a viscous medium subject
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to a uniform constant or arbitrarily time-varying
field, we solve the corresponding Schrédinger
equation and show that this procedure yields the
classical eleetrical conductivity expressions for
both de and ac fields.

II. PARTICLE IN A UNIFORM
CONSTANT FIELD

The cquation of motion for a particle of mass m
and charge ¢ in an electromagnetic field is

mv=q[E+ (v/c) xB],
for which the Hamiltonian is

_ (p=aA/e)
2m

H g®,
where

B=VxA and E=-Vd—(1/c)dA/dL.

For the case of a constant electric field E, along
the z-axis, the usual procedure is to choose

b= —Fyz, (1a)
A=0. (1b)

Then, considering the time-indcpendent Schré-
dinger equation for the z motion

— (R*/2m) (d%/d2®) —qEoxy = e, (2)
the solutions are found to be

V=2 01s(32°7),
where

= (2m/@*R*Es*)'* (e+qEox),

and J.,; are the Bessel functions of order 4-1.
As in the case for the free particle, a continuous



set of energy levels exists. If, however, there is at
z=0 a perfectly reflecting plane [so that
Y(2<0) =0], then the energy levels form a dis-
crete set of bound states.

Let us now consider an alternate treatment of
this problem. The aforementioned electric field
may also be generated by setting?

$=0, (3a)
A.=—Eyt, (3b)
A,=A4.=0, (3c)

so that the Hamiltonian (for the z motion)
becomes?

H = (p+qkt)*/2m. (4)
The Schrodinger equation can then be written?
— (72/2m) (6%/8x%) — (thqEot/m) (9¢/x)
=ih(Iy/at). (5)
Making the transformation®
f=x—qE?/2m, (6a)
r=t, (6b)
Eq. (5) becomes
— (72/2m) (8%/0¢*) =1k (3y/d7), ()

which is just the Schrodinger equation for a free
particle. The solution ¢ is thus

Y =exp(—ihk?r/2m)[ A exp (tkt) +B exp(—1k¢) ]

(8)
or
v =exp(—hk¥%/2m) { A exp[ik(z—qEs2/2m) ]
+B exp[ —tk(x—qEs?/2m) ]}, (9)

where k is a constant.

To avoid the difficulty of an infinite norm as
well as to insure conservation of probability, the
particle is enclosed in a box of edge-length L
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centered at the origin. Periodic boundary condi-
tions are assumed, so that k=2rn/L, n=0,
1, 2, . ... By the usual procedure, the probability
current density can be shown to be

Q=Re{y*[ (A/im)d/dx+qEt/m I}, (10)
where
v=(fi/im) (/) + (qEt/m) (11)

is identified as the velocity operator.
It isinstructive to determine the development in
time of the minimum wave packet?

- MU
R ] (12)

6(z) =[2r(Ar)"] 1 exp [

where we have chosen (x)=0 and (p)=mu,
at time t=0. Using the general form of the wave
functions

Ui, £) = (1/L)"2 exp[ ik (2 — gEol?/2m)
— (dhk/2m) ]

and expanding Eq. (12) in terms of the i (2, 0),
as they form a complete orthonormal set,

¢(:E, 0) = Z Ak‘l’k(z’ 0);

we can obtain the constant coefficients A;. Then,
in the usual way, we follow the development of
Eq. (12) in time, writing
¢<x1 t) = Z Ak‘l’k(xa t)y
k

obtaining for the position probability density

o0 e ot B
d)(ﬂl, - ™ ( I) +4m2(Ax)2

X {— L2 (gfof?/2m) —uit I
exp 2[<AZ)2-|—ﬁ2t2/4m2(Ax)2]

}. (13)

It is thus seen that the center of the packet moves
like a classical charged particle in a uniform
electrical field, with initial position z=0 and
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initial velocity v. The breadth of the packet
spreads out just as in the free-particle case, a
result of the free-particle form of the wave func-
tion.

III. PARTICLE IN A VISCOUS MEDIUM
SUBJECT TO AN EXTERNAL FIELD

As was shown in the previous section, for a
charged particle in a uniform electric field, the
method employing the static scalar potential
vields stationary states, while the method em-
ploying the vector potential leads to a non-
stationary quantum dynamical treatment. Related
to the latter result is the fact that fixed boundary
conditions can be found which conserve prob-
ability flux, but not which make the wave function
vanish at the boundaries.

Let us now apply this method to study the flow
of electric current through a conductor under an
applied electric field. We approximate the energy
loss (resistance) experienced by the charges with
linear damping and investigate the one-dimen-
sional case. For the nth charge, the classical
equation of motion is

mi-+at=qE(¢), (14)
where E(t) is the applied electric field. It can
easily be verified that a suitable single-particle
Hamiltonian is

H=e¢p*/2m—evqE(t)z, (15)
or, of the form (4),

H=e[p+q [ e E(t)dt]*/2m, (16)

where y=a/m. Using the latter, the Schrodinger
equation becomes®

- <2m) dz? m /6 E(t)dt dr

%

=ih—.
at

(17)
Making the transformation

E=z—(q/m) [te ["erE(N)dNdy, 7=t, (18)
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Eq. (17) becomes
—e 7 (72/2m) (6%/08) =ifi(dy/or),  (19)

which is the Schrodinger equation for a particle
in a viscous medium with the Hamiltonian

H=ep?/2m, (20)
and whose classical equation of motion is
mE-+myE=0.

In discussing the “quantization’” of the above
dissipative system, we must emphasize that it is
really a semi-classical treatment, in that the par-
ticle is quantized but the system (conductor)
with which the particle interacts is not. It is
expected that Eq. (19) should be a good approxi-
mation for a charged particle of high energy
moving in the “large system” (conduector) of much
lower average (thermal) energy. Under these
conditions, the charged particle slowly and
almost continuously loses energy to the conductor,
while other effects of the conductor on the particle
can be ignored.

Proceeding to solve Eq. (19), the variables £
and 7 can be separated, and the wave function is
found to be of the form

Vi (&, 7) =exp[ ikt + (Rl /2my) ], (21)
and in terms of variables z and ¢,
¢k(x7 t)
=A. exp{xik[z— (g¢/m) [te [* erE(N)d\dv]
+ (shkPet/2my) ). (22)
Again to conserve probability flux,® we employ
box normalization with periodic boundary condi-

tions, so that k=2mn/L, n=0, 1, 2, ..., insuring
normalization of the wave function

L2
f Yrpdzr=1.
—L/2

To determine. the temporal development of the
minimum wave packet (12), we use the general



form of the wave function
Yi(£, 8) = (1/L)V? exp[ké+ (dhkPet/2my]  (23)

and follow the same procedure as was done
previously. The resulting position probability
density at time ? is

w L, BP(l—er2)
86 1) = vzw[m@ P W]}
Xexp{ —[E—w(l—e) /vy }
2L (AE)* 72 (1—e79)2/4my? (AE)*])

(24)

Thus, the center of the packet moves like a
classical particle in a viscous medium with initial
position §¢=0 and initial velocity v. The breadth
of the packet also spreads out with the same time
dependence as the classical particle. For t—,
the center approaches vy/y (classical range), and
the packet ceases to spread out, the width ap-
proaching

L(AE)Y 4172/ 4mPy* (AE)* 2. (25)

As a specific example, let us assume that the
applied electric field is an alternating one, so that

E(t) =E, exp (iwt), (26)
and proceed to calculate the dynamic value of
electrical conductivity. From Eq. (26) and the
Hamiltonian (16), the velocity operator is

&= (e7'p/m) +[e™'qB/m(y+iw) ], (27)

so that if we set A, =A_, the expectation value
of & becomes

(&) =-e®iqBy/m(y+iw) (28)
as (p) vanishes. If there are N charges per unit
volume, then the expectation value of the current

density j is

(7)=Ng(@)=e“Ng’Eo/m(y+iw), (29)
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so that writing (j)=c (&) gives for the dynamic
value of the conductivity

o=N¢/m(y+iv), (30)

in agreement with the classical result (setting
w=0 yields the value for the dc field).

Iv. CONCLUSIONS

For a charged particle in a uniform constant
electric field, note the completely different
structure between the stationary solution for the
scalar potential &= — Eyr and the conventional
form of Schrodinger’s equation, and the non-
stationary solution (9) for the time-dependent
vector potential (3) in the Hamiltonian (4).
Further, the appropriate boundary conditions in
the two cases are quite different; so that, although
a gauge transformation in theory affects the
solution only by a phase factor, in practice the two
approaches are quite distinct.

We also note that the inclusion of linear
damping in Schrodinger’s equation wvia the
Hamiltonians (15) and (16), although not well
understood quantum-mechanically, leads without
approximation to values of the conductivity
which are correct in the classical regime.

APPENDIX A

In this Appendix, we show the connection
between the two treatments of the uniform
field problems given in Sec. I1. For the Hamil-
tonian

(p—qA/c)? n

H=- 3
om 79, (A1)

let us perform the gauge transformations

A'=A+ VY,
& =d— (1/c) (0f/9t) (A2)
and consider the (primed) Hamiltonian

—qgA’/e)?
(p—qA'/c) n
2m

= q®'. (A3)
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It is known that if ¥ is a solution to the Schro-
dinger equation

Hy =1k (3y/at), (A4)
then
¥’ =exp (igf/fic) ¥, (A5)

is a solution to the Schriodinger equation
H'Y =ik (3¢ /9). (A6)
Let us use this procedure to obtain an alternate
solution of Eq. (2).
In this case, H is as given by Eq. (4), where

$ =0,
Ax = Eoct,
A,=A,=0. (A7)
In order to obtain the Hamiltonian
H' = (p*/2m) —qEox, (A8)

where
A’ =0,

&' = — Eq, (A9)
we must choose

f=EoCtx, (AlO)

apart from an arbitrary constant. Thus, an
alternate solution of Eq. (2) is

' =exp (igButz/f)¥, (A11)

where
[ (242 Et?/3) ]
1p =exp| —
2mh,

X (A expikt+B exp—ikE), (Al12)

and
E=z—qE?/2m. (A13)

APPENDIX B

Let us present an alternate method of solving
the Schrodinger equation for particles acted upon
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by a uniform (time-dependent) field, with and

without linear damping.® As will be seen, the

resulting solutions have an elegant form.
Consider the Schrédinger equation

— (#2/2m) (8% /ax®) —f(t) 2y =1hi(a¢/dt). (Bl)
The substitution

1 e=x—E&(1) (B2)
yields

— (72/2m) (9%/32") —f (1) [e+E() ¥

+3hE(t) (3y/d2) =dh(ay/ot). (B3)
Now, setting

y=expl{ilmée+ [ L(r)dr]/hl¢  (B4)
gives the result
— (*/2m) (8%¢/d2?)
~[m&/2+f(O)¢—L(t) Jo

+[mE~f(t) Jep=ifi(d¢/0t), (B5)

so that if L is taken to be the Lagrangian that

yields the equation of motion for the classical
particle, i.e.,

L=(m§/2)+f()¢, (B6)
Eq. (B5) becomes
— (h2/2m) (%9 /02%) =dh(8¢/8t).  (BT)

If f(¢) =qE; and only the particular solution for
mE =f(1) is adopted for £, it can be shown that the
solution for ¢ obtained from (B4) and (B7) is
equivalent to that of (A12).

When there is linear damping, Eq. (Bl) is
modified to

—e (2/2m) (%/92%) —ev'f () ud
=dfi(ay/dt). (BS)



Making the substitutions
e=x—E(1),
y=expli[mézev'+ [t L(r)dr])/R}i¢ (B9)
yields
—e vt (B2/2m) (0%p/d22) = (d¢/0t), (B10)

where
L=er[mé/2+£(1)] (B11)
and

mé-+myE=f£(1), (B12)

only the particular solution of (B12) being
taken. It can be shown that the sclution ¢ ob-
tained from Eqs. (B9)-(B12) is, within a time-
dependent phase factor, just the solution (22).
They are not identical because the purely time-
dependent term of the Hamiltonian (16) was left
out of the Schrodinger Eq. (17).
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