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The s-wave Schrodinger equation s solved for a square
well potential with an attractive delta function ot the well
edge. This potential provides o number of soluble illustra-
ttons of the techniques of quanium mechanics. The bound
state eigenvalue problem is solved as is the scatlering prob-
lem for the cross section. The potential is capable of pro-
ducing a sharp low energy resonance. The resonances are
discussed using both R-matriz and S-matriz methods.
Numerical examples are presenied.

I. INTRODUCTION

Exact solutions of the Schrédinger equation are
known for only a few potential forms. For the
most part, the soluble problems are used to
illustrate either bound state or scattering calcula-
tions. For some potentials, e.g., the square well,
both types of solutions may be obtained with ease.

One may approach the scattering problem from
a more sophisticated viewpoint by using R-matrix
theory or S-matrix methods. Either of these
provides a convenient framework with which to
discuss resonances. Of particular interest are the
narrow resonances which are characteristic of low
energy neutron scattering from heavy nuclei. In
addition, bound states of a system can be related
to eertain poles of the S matrix continued into the
complex energy plane.

We present here a simple potential which il-
lustrates all of the features above. The bound
state and scattering wavefunetions can be deter-
mined exactly, The potential is capable of produc-
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ing sharp resonances in the cross section. The R-
matrix theory can be applied explicitly. The
analytical continuation of the S matrix can be
accomplished allowing the identification of bound
states and resonances of the system.

It is thought that this potential form has its
importance in the rich variety of soluble examples
it offers for a number of techniques in quantum
theory. Each type of calculation is presented in a
separate section beginning with a specification of
the general properties of the potential in Sec. I1.
The bound state problem is presented in Sec. III,
and Sec. IV contains the seattering calculation.
The R-matrix description is presented in Sec. V
and the S-matrix theory in Sec. VI. Finally, some
sample calculations are given in Sec. VII.

All of the caleulations are limited to the con-
sideration of ¢ states or s waves. The extension to
higher angular momentum values is possible and
direct. No references are given in the sections to
follow as the methods and concepts employed are
well known to students of quantum mechanics. A
concise yet readable account of the analytical
properties of the S matrix and of the Jost function
is given in the book by Taylor.! A discussion of the
R matrix may be found in the book by Wu and
Ohmura.?

II. PROPERTIES OF THE POTENTIAL

The three-parameter potential is taken to be
V(r) = —[qo*e(r—a) +Bs(r—a) Jh%/2m,

where

(D

e(r—a) =1, r<a
=0, r>a

and 3(r—a) is the delta function. Thus the
potential consists of a square well with an at-
tractive delta function at the well edge. We shall
consider only the case for which both ¢® and B
are positive. Alternative cases could also be
discussed.

The s wave radial equation to be solved is

(d/dr®) +[k*+qi’c(r—a) +Bé(r—a) =0,

¥(0)=0, (2)



with E =72%k2/2m being the system energy (which
may be negative or even complex for later con-
siderations).

The effect of the delta function is to produce a
discontinuity in the derivative of the wave-
funetion at r=a. Letting a* and ¢~ denote the
result of taking the limit as r approaches ¢ from
the right and left, respectively, we find on inte-
grating Eq. (2) over a small interval containing the
point r=a,

dw/dr |+ —dy/dr |o~=—By(a). (3)

This equation, together with the continuity of
at r=a, allows us to obtain the solution of the
differential equation.

III. BOUND STATES

We first investigate bound state solutions,
letting E = —#2k;2/2m. There exists the possibility
of two types of bound states—one with energy
below the square well depth, k?>¢? and the
other with energy above the well depth, 0<k2<
qe®. Considering the former case, let ¢?2=k?—
go2>0. The solution of the radial equation which
is eontinuous at r=q is

Y=A sinh (gr),
= A sinh(qa) exp[ —k:(r—a) ],

r<a
r>a (4)

with A a normalization constant which can be
determined if desired. On evaluating the required
discontinuity in the derivative of ¢ at r=qa, we
obtain

koA sinh(qea) +q24 cosh(gea) =BA sinh(qa)

or

B—g; coth(gua) =k;= (¢*+g2) "% (5)

Considered as a function of gs, the left-hand side
of this transcendental equation is monotonically
decreasing from the value B—1/a at ¢2=0. The
right-hand side is monotonically increasing from
the value go at g2=0. Thus at most, a single solution
for g2 (or k») exists if and only if (B—gq)a>1.
We see that the attractive delta function potential
must be sufficiently strong in order to bind a single
state with energy below the square well depth.

We now look for solutions above the well
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bottom Wlth 0<k22<q02; let’olng Q12=QO2—7022- The
continuous solution with the bound state form is

A sin(qgir), r<a,

A sin(ga) exp[—ko(r—a)], r>a. (6)
Evaluation of the discontinuity in the derivative
of the wave function at r=a gives

@ oob(qa) =B—(g*—a@)'?,  0<qu<q. (7)

As the cotangent function is periodic with
period , it is convenient to discuss possible
solutions of Eq. (7) for ¢; in ranges such that

(n—1)r<qa<nr, n=1,23, -,
always with the understanding that ¢, <go.

The n=1 case (qo<w) requires special atten-
tion. We have seen that if (B—qy)a>1, one
bound state exists below the well bottom. Then
no bound state solution of KEq. (7) exists for
qpa<w. For qua<m, the left-hand side of Eq. (7)
is monotonically decreasing from the value 1/a
at ¢1=0. Thus no solution exists if (B—gq¢)a>1.

If (B—q)a<1, then no solution exists below
the well bottom, but a solution may exist above
the well bottom in the range ¢;a <= if the well is
deep enough. For qu>7/2, the monotonic
behavior of the two sides of Eq. (7) yields a solu-
tion for qra<<w if and only if (B—g)a<1. This
condition is also necessary for a more shallow well
(qoe<w/2). There is for this case, however, the
additional sufficiency requirement, go cot(goa) <B.

Solutions of Eq. (7) may exist for gia>= for
either type of value of (B—g)a if the well is
sufficiently deep. These solutions will be of the
form

qla =nm + An,

0<A <, qoa>nw-+A,

and are determined by the solutions for A, of
(nw+An) cotA, = Ba—[¢fa®—(nwr+ALJ2  (8)

In the extreme case of (B—qo)a>>1, solutions
oceur near qia=nw<<Ba.

Summarizing, we find that if (B-¢o)a>1, then
a bound state exists with energy below the square
well depth. If so, then no solution exists above the
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well depth in the range qia= (g*—k2)2a<w. If
(B—qo)a<1, then no solution exists with energy
below the well depth, but a solution may exist for
ga<mw. In either case, solutions may exist in the
well with gia=nz-+ A, <gotr.

IV. SCATTERING STATES

We now turn to the description of scattering
states (s wave only) for this potential setting
E=%%:2/2m>0, g2 = g+ k2. For r>a, the wave-
function must be of the form ¢=C sin(kyr+3)
where the phase shift § is to be determined. The
scattering cross section is expressed in terms of the
phase shift as

o =47 8in%) / k2.

The solution of Eq. (2) which is continuous at
r=alils

¥v=A sin(qr), r<a

= A sin(qia) sin(kyr+6) /sin(kia+-8), r>a. (9)

The discontinuity in the derivative of ¢ at r=a
leads to

[ B sin(g:10) — ¢ cos(qa) ] sin(kaa+5)

= —ky sin(qa) cos(kia+3).

This may be rewritten as

_ [B sin{qia) — q: cos (qua) ] sin(kia) 4k, sin(qia) cos(kya)

tand =

[B sin{qia) — q1 cos (qua) ] cos(ka) — k&, sin(gua) sin (k)

or equivalently,

{LB sin{q1a) — ¢ cos(qa) ] sin (k) +k, sin(qia) eos (k) }2

(10)

sin% =

[B sin(qa) — g1 cos(q1a) P+ F:? sin?(q1a)

The cross section may now be calculated as a funetion of energy, E = 7%k?/2m.

Inspection of Eq. (10) reveals that a low energy (kia<<1) resonance may be expected to oceur if
tan(qia) &q1/B. Then e~4x/k:2 To investigate the possibility of resonances further, we set gia=da+e
with tan (da) =d/B. Then with ¢ considered to be small,

tan(qia) ~d/B+e(B*+d?) /B4 -,
cot(qia) ~B/d—e(B*d?) /d>+- - -.

Substitution into Eq. (10) gives

{ky cos (k@) + sin(kya) [ (B*+d?) —B/aJe/d}*?

sin?s =

We introduce a resonance energy Ea=#%4#/2m
with d2=¢2+ k2. For E close to E; we have

e=a— dakﬁ%a (k12- kdz) /d.
In this approximation, we have if | sin(kia)| <1,

(r/2)° ),

4
X ((E—Ed)2+(I‘/2)2 (1)

o

which is a Breit—-Wigner resonance form with
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kA (B+®) —B/a}e/d

width
= (72/2m) {4d?%ks/[ (B*+d*)a—B1},

and resonance energy Eg;=#%2/2m with ki
determined by

k= (&= g™,
V. R-MATRIX FORMULATION

The R-matrix description of scattering provides
a convenient basis for discussing resonances. It is

tan(da) =d/B.



defined in terms of the wavefunction and its
derivative at r=at,

Y (a) =Ra(dy/dr)|." (12)

To express the § matrix, S= exp(24), in terms of
the R matrix, we note that for r>a,

y=A[S exp(tkr) — exp(—1kr) 1.
Employing Eq. (12), we have

8= exp(—2ika) (1-+ikaR)/(1—ikaR). (13)

The R matrix can be expressed in terms of a
complete set of functions defined in the interior
region, 0<r< at. Thus we consider the interior
wavefunction which is a solution of

(y/dr*) +[k*+qo’e(r—a) + B (r—a) =0,

¥(0)=0 (14)
and the associated eigenvalue problem,
(dPyn/dr*) + [k +go’e(r—a) +Bé(r—a) Jyn=0,
(15)
with boundary conditions,
Yn (O> = 07
dyn/dr |+ =0=dya/dr |.-— By.(a).

Setting g2 == g®+ k.2, we find that the normalized
solution of the eigenvalue equation is

Qn2 + B2

2 1/2
= (& M) Sin (gar), r<a,

(16)

with g, such that tan(g.a) =g./B determines the
eigenvalue k2= (¢.2—q?). There may also be
solutions with k.2 negative. These are to be
included in the set.

e sind = (S—1)/(25)

Square Well Plus Delta Function Potential

We now expand the interior wavefunction ¢
in the orthornormal set {.}.

¥(r) = 2 can (1),

Cn= /: Yu (PP (r)dr. (17

The coefficient ¢, can be evaluated by applying
Green’s theorem to Eqgs. (14) and (15) and using
the boundary conditions. Thus,

&
Y (@) dr

~— (o= [ ) dr,

at

Recalling the definition of the B matrix Eq. (12),
we have

en=—ya(a)¥(a) /LaR (F*~k.?) ]

The interior wavefunction then has the expansion,

¥(r)=—[¥(a)/aR] 2 [yn(a)yn(r) /(B —ka*) ].

This equation may be solved for R by evaluating
at r=a:

R=— 3 [ya(a)¥/a(kt—k.?)]

— 2 [/ (E~En) ], (18)

with
Yol =Yu(a) 2/ (2ma),
Bo= 7t/ (2m).

Since y, (@) is known from Eq. (16),

0’

Cni;)(m (19)

From Kq. (13) for the § matrix and Eq. (18) for

the K matrix, we can write the scattering ampli-
tude,

=¢-he{ — sin(ka) +[ (e-*kaR) /(1 —ikaR) ]}

= g tka (—— sin(ka) —

e—ikafq Zn[7n2/ (E_En) ]) )

1+4-tka Zn['Ynz/ (E_En) :I (20)
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The conventional separation has been performed here so that the first term in Eq. (20) represents hard
sphere scattering.

We concentrate on resonance effects by allowing E to be close to one of the eigenvalues, E=E,-A,
with A small compared with the eigenvalue spacing. Then

R=— Z [7m2/(E_EM):|= _['Yn2/(E_En)]—Pn(E)7

with
Pn(E) = Z 'Ym2/(En_Em+A)

mFEn
slowly varying for E close to E,.

After some algebraic manipulation, the amplitude has the form,
e® sind=e~*2(— gin(ka) —e #{[ 4T+ (E— E,) Pu@Qn](1+ikaPy) /(B —E,+41T,) }) (21)
with
I'.=2kay.2/ (1+Fka2P,?),
E1=En_kaPnI‘n/2,
Qn=Fa/ (1+k2a2P,?). (22)
To this point, no approximations have been made. In order to obtain the usual resonance form, the
slowly varying but energy dependent quantities, Py, Q., k, T's, and E, are evaluated at E = E,. Thus, for

example, T, becomes
T, =2k.0v.2/ (1+k20*P,(E,.)?).

If a resonance oceurs at low energy (k.a<<1), then a Breit—Wigner resonance is obtained.
o (4n/k?) (3T0)2/[(E—Er)*+ (3Tw)].
A detailed analysis shows that the resonance is very sharp if ¢p&B and if Ba>>1.

VI. S-MATRIX THEORY

We now turn to the analytic continuation of the S matrix into the complex E or k planes (=
#2k2/2m). For k real, = (qo?+k?) Y2, the solution of the radial equation is

Y=A sin(gr), r<a
= A sin(qa) (Se®—e~*r) (Seke—e~ha)=1  r>gq (23)
and
d/dr |o+—dg/dr o= — By (a).
Thus,

S=f(—k)/f(k) =e**{[B sin(ga) —q cos(qa) —ik sin(ga) ]/[B sin(ga) — g cos(ga)+ik sin(ga) 1}, (24)
where

J(k) = —e™[B sin(qa) —g cos(ga) +ik sin(ga) 1/g

is the Jost function.?
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To continue f(k) [ and S(k) ] into the complex k plane, we choose ¢ to be the branch of (ge?+k?)/2
which is real positive for k real. Explicitly, with k= ki+4-iks, g=q1+7gs,
q1= {3 (g +h*— o) +3[] @+ ki’ —ko? P+-4kha? T2}112,
Qo= kiko/qn. (25)
Then,
J(k) = —{[B+i(k—q) ] exp[i(k+q)al—[B+(k+q) ] exp[i(k—q)a]} (2ig) 7, (26)

which is analytic for all k.

The S matrix S(k) is then analytic except for poles corresponding to the zeros of f(k). We first
congider poles of the S matrix corresponding to bound states of which there may be two types. For
k=lky+1ks, = g1+ 1qs, the Jost function may have a zero for k; =0 and either ¢; =0 or ¢;=0. In the former
case, we have

f(ike) =0= —{[B—Fky—q] exp[ — (ks—qs)a]—[B—ke+qo] exp[ ~ (ko--gz) a1} (2¢z) !
or, after rearranging,
B—g, coth(gea) =ks= (g2 +¢") ',

which is Eq. (5) for a bound state below the square well depth and can only be satisfied if (B—go)a> 1.
In the latter ease, ¢2=0, the Jost function has zeros at the solutions of

q cot{qia) =B—~ky=B— (gl—q2)12

which is Eq. (7) for bound states above the well depth.

To deal with poles of the S matrix which may correspond to resonances, we let k= ky— ik, g=q1—1qgs,
with &1, ks, ¢1, ¢» all nonnegative. This portion of the complex £ plane maps onto the lower half of the
second sheet of the Riemann surface for S(Z) which is cut along the positive real axis. On setting
f(k) =0, we obtain the complex transeendental equation,

exp (qua) [B—qatka—1i(gi—k1) J exp (igia) = exp(—qua) [B+g+ke+i(qi+%) ] exp(—iqia).

We rewrite this in polar form,

exp (¢20) [ (B—go+F2) 2+ (g1 — k1) T2 exp[i(gra—6) ]
= exp(—qa) [ (B+g+k)*+ (g +5:)* T exp[ —i(qra—¢) ],
with
tanb= (g1—k1) / (B—ga+Fa), tang= (q1-+k1) / (B+q+ks).

A set of real coupled transcendental equations is obtained on equating both modulus and phase of
each side of this equation. They are

dga= In{[ (B+gt+ke) 2+ (q1+k) 2]/ [ (B—qo+ks)*+ (1 — K1) 2]},
2qa=2nm+ tan7'[ (i1—k1) / (B—qa+ks) [+ tan'[ (qi+k1) / (B+qe+Fe) . (27)

These equations may be solved for &y, k; with ¢; and ¢» determined by Eqgs. (25). Alternatively, they
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may be solved for ¢, g2 with

k= {3(g’— ¢’ — ") +3[| ¢’ — g’ —® P+alg’ T2},

ky= Q1(12/ key.

If we denote a zero of f(k) by ki — ks, then S(E) has a pole at E=E,—iT'/2 with

E,=72(k—ks2) /(2m),

An iterative scheme for determining the
solutions Gy, §» of Eqs. (27) which has been found
successful is as follows: An initial estimate of
q26=0.001, g1=qo, n equal to the largest integer
not exceeding qoa/ is substituted into the right-
hand side of Eqs. (27) to calculate a second
estimate for qa, gza. This process is repeated until
convergence occurs—very rapidly in practice.

To obtain & next pole, the first estimate for qa
is taken to be the value for the preceding pole
plus =, for gza, the value for the preceding pole,
and n is increased by unity. In a number of
sample calculations, this procedure has always
been found to converge rapidly.

VII. NUMERICAL EXAMPLES

We present here the results of calculations for
two sets of potential parameters corresponding
to the conditions (B—qy)a<1 and (B—g)a>1,

-

2.0

E

Fia. 1. The s-wave cross section in arbitrary units is shown
as a function of energy for potential parameters Vo=
102.921, B=11.045, a=1. The resonance peak occurs near
E=0.23.
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I'= 4%2’:21]22/ (2m) .

respectively. We use a system of units for which
#2/(2m) =1, a=1. The square well depth ¢ will
be renamed V=g The parameters are chosen in
each case so that a low energy resonance is
present.

For the first case, ¢p=10.145, B=11.045, a=1
so that (B—qo)a=0.9<1, and the well depth
Vo=102.921. The potential supports three bound
s states which from Eq. (7) have energy eigen-
values

E,=—1027, E;= —84.39, E,=—48.90.

The scattering cross section (s-wave) in
arbitrary units is shown in Fig. 1 as a function of
energy. Note that a low energy resonance appears
in the vicinity of E =0.3. This resonance is rather
broad as might be expected since B and ¢, differ
by a small amount.

The S matrix has poles at E=FEi—iE,. The
first eight are given in Table I,

For the second calculation, ¢,=9.51, V,=90.44,
B=100, a=1, and (B—qy)e>>1. While the well
depth is little changed from the previous case, the
much stronger delta function strength produces
substantial changes in both the ground state
eigenvalue and the resonance widths.

Tasie I. Location of resonance poles E =E;—iE.

B, E,
0.038 0.459
73.83 9.544
167 .4 16.44
280.7 23.63
413.8 31.21
566.6 39.15
739.2 47.44
931.5 56.05




— |

F1a. 2. The s-wave cross section in arbitrary units is shown
as a function of energy for potential parameters Vo=90.44,
B =100, ¢ =1. The resonance peak occurs near £ =0.18.

The bound state eigenvalues are calculated

from Eqgs. (5) and (7) and have the values
Ey=—2545.0, By = —80.35, E,=—50.10.

The s-wave scattering cross section in arbitrary
units is shown in Fig. 2 as a function of energy.
The resonance is seen to be very sharp with a peak
at £'=0.18. The dip in the cross section on the low
energy side of the resonance is characteristic of
the interference between the hard sphere scatter-
ing amplitude and the Breit—-Wigner resonance
amplitude.

The first eight resonance poles of the S matrix
are given in Table II.

In this second example, the cross section has its
peak at an energy very close to the real part of the
resonanece pole energy while the imaginary part is
small in comparison. This feature contrasts with

Square Well Plus Delta Function Potential

TasuE II. Location of resonance poles, £ =F,; —iE..

Fy Es
0.1841 0.0077
70.64 0.2671
161.2 0.6195
271.8 1.134
402.5 1.835
553.1 2.736
723.8 3.849
914.5 5.181

the first example. There the pole location is such
that the imaginary part is in fact considerably
larger than the real part. As a result of the pole
being relatively far from the real E axis, interfer-
ence between the pole term and the background
shifts the cross section peak away from the value
of the real part of the resonance pole encrgy.

SUMMARY

The Schrodinger equation has been solved for
the bound s-state and scattering s-waves for a
square well potential with a delta funection
potential at the well edge. The nature of low
energy resonances has been investigated in both
R-matrix and S-matrix formulations. Numerical
examples have been presented to illustrate the
features of this potential.

1 John R. Taylor, Scattering Theory (Wiley, New York,
1972).

2T, Y. Wu and T. Ohmura, Quantum Theory of Scat-
tering (Prentice-Hall, Englewood Cliffs, N. J., 1962).

¢ The Jost function is defined here so that f(k) =1 if the
potential is identically zero.
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