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The system of coupled oscillators forms a very simple
many-body system that can be treated exactly within
elementary quantum mechanics. This system is used fo
introduce tmportant many-body concepts, such as spectral
function, propagator or Green function, sum rule, and
elementary excitation. These concepis are briefly discussed
for the real system of conduction electrons interacting with
lattice vibrations.

A MODEL SYSTEM

It is the purpose of this article to present a
problem which presupposes nothing but the most
elementary quantum mechanics and still illus-
trates in a simple fashion some important ideas
and concepts for many-body systems. One of the
key problems in this branch of physics is the
following: Suppose that we have added a particle
with momentum p; to a many-body system at
time &. What is the probability of finding the
particle with momentum p. at time f? For non-
interacting particles the probability will be unity
for pi=p: and zero otherwise.! For interacting
particles the probability will be a number between

* The publication of this work has been supported by
Léngmanska kulturfonden, Sweden.

zero and one that depends on the state of all the
other particles at time #;. Further, if the particles
are identical, i.e., indistinguishable, we must ask
for the probability of finding eny particle with
momentum p; at time .

As an illustration we will consider a very simple
many-body system consisting of two interacting
oscillators with unequal masses m; and ms, force
constants k; and k;, and a coupling constant ks.
We then have the Hamiltonian

H = p12/ (21711) +p22/ (27712) +%kv1.%‘12

+%kz.’522+‘%k3 (-'171_372)27 (1)

where p; and p; are momenta and 2, and x» posi-
tion coordinates for the oscillators. If k3=0, we
say that the system consists of two (unequal)
independent oscillators, 1 and 2 (in many-body
jargon, ‘“‘bare” oscillators). The corresponding
wave functions are &,(2;) and x.(z2). When
k370, asimple transformation (see Appendix) will
give us the Hamiltonian of two uncoupled dis-
placed oscillators (primed wave functions, new
oscillator frequencies wy’, we’, and energy eigen-
values F,'). Let us now consider one single oscil-
lator in its ground state. We add to this system
another ‘“bare” oscillator in its Nth excited state
and switch on instantaneously an interaction
according to Eq. (1). In other words, we have
at time {=0 a wave function ¢ y(=0)=
@ (x1)xw (x2). This is not an eigenstate of the
Hamiltonian (1). To find the evolution in time,
we therefore make an expansion in the complete
set of wave functions ® and x’ for the trans-
formed uncoupled oscillators:

'I/O.N (t) = Z Am.no'Nq)m’Xn’

m,n

Xexp{—i[ (m+3)w'+ (n+3)ed' I} (2)

The expansion coefficients are related in a recur-
sive way (see Appendix).
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Fia. 1. The spectral function A(N; w) for N=7 bare
excited state. The force constants are ki=h,=1, k3=0.7.
The masses have been so chosen that the frequency ratio
is wi’/w’ =2; w is taken as the energy unit. The arrow
points at the energy of Eq x of the bare states. The half
width 2T and the energy shift Ay are also shown.

Let us define a spectral function A (N; ):

AN;0)=2 | AndY |2 En —Fw). (3)
The integral,
wot+Aw
AN; w)d (fiw), 4)

)]

gives the probability that a measurement of the
excitation energy yields a result which lies in the
interval [Fiwo, % (wo+Aw) . All wave functions are
normalized to unity, i.e.,

1=f f [ Youx Pdndey= T | Ana" P ()

—0o0 —_0

Thus, we find that the spectral function obeys a
sum rule:

JAN;w)dfw)=1. (6)
As an illustration, we have calculated numerically
the spectral function for a particular choice of
parameters in Eq. (1) (Fig. 1). A smooth curve
has been drawn through the discrete set of delta
function amplitudes. A Lorentzian shaped curve
A’ (not shown in the figure) can be fitted to the
main peak of A (N;w); A’ can be written

A’(N; w) = (ZN/’IF)PN/E (ﬁw—Eo,N—AN)2+ I‘Nz:l.
(7)
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It is easy to see that 4’ would contribute the frac-
tion zy to the sum rule (6).

We next ask for the probability that a system
which is initially in the bare state ¥ » will still
be found there at time ¢ It is easy to verify that
this probability is the squared norm of a prob-
ability amplitude G (N;¢) which can be written
as the Fourier transform

GV 1) = /wA(N;w)exp(—iwt)d(ﬁw). ®)

—0

This expression follows immediately from the well-
known form in elementary quantum mechanics
for the probability amplitude, namely

/°° /°° Yo.n* (Oo,v (0)d2ids.

—00 ~ —00

(9)

G (N ;1) contains information about the evolution
of the system both in space and time and is often
referred to as a propagator funciion. It corresponds
closely to the ordinary Green functions of many-
body systems.2? From Eq. (8) we see that the
information contained in the propagator function
is also in the speetral function, and we can use
either expression as a starting point for interpre-
tations.

INTERPRETATION

Our model calculation can be given an interpre-
tation that brings us close to many concepts in
real many-body systems. We started with the
introduction of one “bare” oscillator in its Nth
excited state. This oscillator was allowed to inter-
act with a many-body system in its ground state,
which in our simple case happens to consist of
only one particle (i.e., the other oscillator). If it
were not for this interaction, the first oscillator
would remain in its Nth eigenstate forever and
the spectral function would be just one single
delta function:

AN; w)=08(Eyx—Fw). (10)

With interactions, the system will have a com-
plicated evolution in time that is mathematically
described by the full spectral function. From
Fig. 1 we see that A (N; ) has a fairly sharp peak
of width 2T superposed on a more or less irregular



background. The main peak corresponds to a
wave packet with terms in Eq. (2) that stay
approximalely coherent (i.e., they all have the
same phase) over a time 7=#/2I. The other
terms in Eq. (2) corresponding to the irregular
background in the spectral function will get out
of phase in a time much shorter than 7 and add
up approximately to zero. Thercfore, for times
t<r (but not too small), the wave packet takes
the approximate form

Yo.v (1)R® (21, 22) exp[ —i(Fon+An)E/A], (11)

where ®(z1, 22) is a function of the coordinates
23 and z, only. If 7 is long compared to the period
of oscillation of the right-hand side of Eq. (11),
this expression can be considered as an approxi-
mate cigenstate. It can be labeled by the quantum
numbers (0, N) of the bare state and has a time
dependence similar to that of a true cigenstate.
On the other hand, the wave function in Eq. (11)
is not normalized to unity. The system is de-
scribed as containing an elementary excitation
with quantum number (0, V), strength zw, life
time #%/2T, and energy shifted from the ‘“‘bare”
value Ey y to Eo x+ Ax. It is only when the spec-
tral function has a pronounced peak that it has
any meaning to talk about elementary exeitations.
Figure 2 shows how A (V; w) changes with excita-
tion energy. For higher N values, the spectral
function ean no longer be given a simple interpre-
tation in terms of elementary excitations. A more
detailed account of the interpretation given here
can be found, e.g., in Ref. 2.
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Frs. 2. The spectral function A (N; ») for three bare
excited states (N'=3, 7, 10). Parameters as in Fig. 1.

Concepts in Many-Body Systems

REAL SYSTEM

We will now sce what form the concepts intro-
duced above will take in a real many-body sys-
tem.* We choose as an example the interaction
between the electron gas and the lattice vibra-
tions in an almost idecal metal. Thus, for simplicity
we consider zero temperature and neglect electron-
clectron interaction as well as band effects due to
the periodicity of the lattice. A free “bare’” clee-
tron of momentum p is supposed to be injected
into the system. Inside the metal, the bare elec-
tron is no longer in an ecigenstate because of the
interaction with the lattice vibrations. Following
the idea of our model caleulation for the harmonie
oscillators, we could try to expand the wave
function for the bare clectron in terms of eigen-
states for the interacting case. As momentum is
conserved, it is natural to label the excited inter-
acting system by p. If there were no coupling
between the injected electron and the lattice
vibrations, the system would be deseribed by a
spectral function that is a delta function:

A(p, w)=8[ (p*/2m—Er)—Fiw]. (12)
It is natural to deseribe the excitation encrgics
relative to the Fermi encergy K since no electrons
can be injected into states of lower energy because
of the Pauli principle. With interactions included,
the spectral function may still have a pronounced
peak of width smaller than the excitation energy.
The corresponding elementary exeitation consti-
tutes what is called a quast particle. It carries a
momentum p but has an energy-momentum rela-
tion that is different from E,=p*/2m—Ep. In
Tig. 3 we plot the spectral function for a real
system (sodium ). The electron state has a momen-
tum p. Without interactions with phonons the
energy is £ =p?/2m. With interactions the state
can still be assigned a momentum p, but there
is a shift and a spread in the energy which is
given by the spectral function. The Fermi energy
is at w=0. The curve is from a calculation by
Grimvall (see Ref. 5) using a realistic form of the
electron-phonon interaction.

One of the virtues of the many-body theory as
presented above is that many of the results valid
for a system of non-intcracting particles can be
retained for the interacting system if only we
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Fig. 3. The spectral function for a real system—elec-
trons interacting with phonons in sodium at T=0 K. The
Fermi energy is at w=0 and E,=p?/2m—Ep is the bare
energy, i.e., without any electron-phonon interactions.
The curve is from a caleulation by Grimvall (see Ref. 5).

think in terms of quasi particles instead of bare
particles. As an example we can consider the heat
capacity of an electron gas, a quantity that does
not depend on the wave function but only on the
density of states. For clectrons interacting with
the lattice vibrations we get mathematically the
same result as for the non-interacting case, if
only we replace the bare-electron density of states
at the Fermi level by the quasi-particle density
of states. Thus, important properties of many-
body systems may be treated in an approximate
way in terms of elementary excitations without
recourse to the exact spectral function. The spec-
tral function (or the propagator) will completely
deseribe the interacting system [sce Eq. (2)]
Therefore, even if the quasi-particle picture is not
valid, we can find, e.g., the thermodynamic prop-
crties from expressions involving an integration
over the spectral function.® As a last practical
example, we note that the quasi particle decays
after a time 7. In other words, we can say that
the injected electron has a lifetime = before it is
scattered, and therefore the mean frec path is
pr/m. There are several other examples from
solid state thecory where we can apply the con-
cepts introduced. Not only electrons but also
photons may interact with the lattice vibrations.
This gives rise to elementary excitations called
polaritons.® As another example, we note that the
lattice vibrations (pbonons) in a real crystal are
never strictly harmonic but are coupled via an-
harmonic interactions. Consequently, the form of
the spectral function will deviate from a delta

1244 / November 1973

function.” As a last example, we can mention that
in an electron gas, the plasma osciilations couple
to the individual electrons and give rise to an
clectron spectral function with considerable struc-
ture.®

SUMMARY

A complete description of a many-body system
requires full knowledge of the wave function. In
general, the wave function contains too much
information; in many cascs it is enough to find
the distribution of excitation energies. That infor-
mation is conveniently obtained from a spectral
function or, alternatively, its Fourier transform
(Green function). The spectral function may
have a sharp peak superposed on an irregular
background. The peak corresponds to an clemen-
tary excitation, and its width is inversely propor-
tional to the life time of the cxcitation. These
concepts were introduced for a simple model
system consisting of two coupled oscillators and
then discussed for the real systems of electrons
in metals interacting with the lattice vibrations.
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APPENDIX

A transformation to normal modes is accom-
plished by a simple change of coordinates:
2y =2 cosa— (mo/my )22, sing,

(A1)

2y’ =&y sino+ (mg/n11 )22 cosa.

The original Hamiltonian transforms to that of
two uncoupled oscillators if

2k3 (7711/’"12)1/2
kyFks— (ma/me) (katks)

tan (2a) = (A2)

Elementary quantum mechanics gives us the ex-
pansion cocfficients 4.."% as

A= [ don* (@1,22) @’ (21 )X (22" )d21d 2.
(A3)



The eigenfunctions of a harmonic oscillator that
enter the integrand of Eq. (A3) have the form
of an exponential times a Hermite polynomial.
Using the recursive relations?

%eH,=H,1+2nH,y,

dH,/dz=2nH, i, (A4)
for the Hermite polynomials H, (z), one finds that
the expansion coefficients A .Y (A mn® = A ».7) can
be related in a recursive way, Eqgs. (A5) and (A6).
The calculations are lengthy but straightforward,
and we only give the final results:

A® =2 (hahokrksmams?) ' 3/c
Ase" =4 (hihokrkgmimy? ) 301bs/ (co)
Aol =4 (hyhokrkamams? ) %0sbs/ (cor)  (A5)
A i = (202/01+201%/ 04— 1) [ (m—1) /m 24 sV
+2(a1as/o14b1bs/ 1) (/M) 2A g na™
+2b1b3/ a4 (N/m )1 2A oy W1
A i =2 (a10s/ 014+bibs/ 1) (1 0)2A g pa¥
+ (2a52/o1+2b2/as~1)[ (n—1) /024 p o
+2bsbs/ a5 (N /n)12A 4 N1
A ¥ =201by/ a4 ()N YH2A g V2
+2 (bobs/04) (n/N )24 i

4 (2bg2/oi~ 1) (N—1)/N 24 a2 (A6)

1 In some cases, e.g., the free electron model for metals,
the particle interaction is approximated by a constant
potential. Such a model retains the properties of an inde-
pendent particle system. An analogous situation is the
use of hydrogen-like wave functions in many electron
atoms.

2P. Noziéres, Theory of Interacting Fermi Syslems
(Benjamin, New York, 1963), pp. 58-73.

3 J. R. Schrieffer, Theory of Superconductivity (Benjamin,
New York, 1964), Chaps. 5, 6; in particular pp. 112-114,
158-161.

1 Throughout this paper we consider distinguishable
particles in our model problem, and therefore some im-
portant aspects of real many-body systems are left out.
If we had two identical particles that were fermions (i.e.,
obeying the Pauli principle), the wave function of their
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A ¥ =0if any N, m, n<0 or if N+m—+n is odd.
This set of recursive equations is easily solved on
a computer. In Eqgs. (A5) and (A6) we have for
brevity used the following symbols:

hi= (k1+ks) costad- (my/my) (ke+k3)
X sina-+ks (my/me )2 sin2e
he= (k14ks3) sinZa~+ (my/me) (ka=4-ks)
X costa—k; (my/m2)'? sin2a
ay= (hymna /B2 )V cosa
az= (hony/Hi2)14 sine
B1= (hyma?/hi%my )Y sing
Ba= (hamao?/H*m1)!* cosa
y1= (kna /72 )14
vo= (komo/h%)14
o1=a’+a’ v
o2 =L+ B+ 2
03= — @181+ 028
o1=ay— (04%/o1)
bi=—B1—a(os/01)
by =Bz —az2(g3/01)
bs=7e

C=ﬁ (0’10’4)1/2

ground state may have components that correspond to the
Nth excited bare state of one particle. Therefore it would
not be possible with probability 1 to add a third identical
particle in the Nth bare state. We have not found it worth
while to carry out an analysis of three coupled oscillators
that would illustrate a many-body system of identieal
particles.

$ 3. Grimvall, Phys. kondens. Materie 9, 283 (1969).

6 C. Kittel, Quantum Theory of Solids (Wiley, New
York, 1963), pp. 42-44.

7R. A. Cowley, Rept. Prog. Phys. 81, 123 (1968).

8L. Hedin and S. Lundqvist, Solid State Phys. 23, 1
(1969), in particular pp. 86-87.

® L. 1. Schiff, Quantum Mechanics (McGraw-Hill, New
York, 1955), p. 63.

AJP Volume 41 | 1246



