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The one-dimensional periodic-potential problem 1is
solved using the Laplace transform method. This method
allows an easy generalization of the Kronig—Penney
model so that it 13 applied lo solve far more complex
one-dimensional periodic structure.

THE LAPLACE TRANSFORM METHOD

All the information regarding the dynamic
states of an clectron moving in a one-dimensional
crystal are contained in the wave function
¥ (2, 1), which is the solution of the Schrodinger
equation

H‘#(-’”; t)=l‘ﬁ[a‘l/(’l', t)/’/at]a (1)

where I is the Hamiltonian operator given by

H=— (82/2m) (d?*/dx?) —eV (z) (2)
and V(z) is the potential energy which acts
upon the electron. This potential energy is always
periodic with period «, that is, V{z+na)=V (z)
for any integer n.

The stationary states, which are the ones with
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perfeetly defined energy, are of the form

¥ix, 1) =y (r) exp (—Et/F) (3)
and they satisfy the eigenvalue equation
[d?/de? 42U (x) /@ W (x) = — KW (x), (4)
where
Ux)= (mae/f2)V (), (3)
K= (2m/M)E. (6)

Ordinary differential equations with periodic
coefficients like Eq. (4) were already studied by
the mathematicians and Floquet; later, Bloch
showed that the solutions of these equations are
of the form

¥(r) =e*u(z), (7)
where u (z) is a periodic function with the same
period as the potential, that is, u(z+na)=u(zx)
for n an integer. Then the solutions of Eq. (4)
arc plane waves modulated by the periodic
function u (x) and this function has the value one
when the effects of the lattice upon the electron
are neglected. From Eq. (7) it is possible to
relate the value of the wave function equally at
all points « located on different cells of the lattice,
among themselves, because, if Eq. (7) is true and
n is an integer, then

¥ (z+na) =exp[ik (v+na) Ju(z+na)

=exp (thna)y (x). (8)
The same thing can be done for the derivative of

¥ (2):

¥ (z+na) =ecxp (dna)y’ (x). (9)

The number k (a vector in the three-dimensional
case) naturally depends on the cigenvalue E of
Eq. (4). This number must be real in order to
have the wave function in Eq. (7) finite for all



values of 2. There are, however, some values of
E for which £ is not real, and that means that
not all solutions F of Eq. (4) are allowed, It is
through the relation between £ and £ that we
can determine the allowed values of E, which
constitute the allowed energy band, and the for-
bidden values of E, which form the forbidden
energy band (or gap).

The dispersion relation Ezk will be determined
in what follows for several unidimensional cases
with the help of the Laplace transform method.

Let us multiply each side of Eq. (4) by
exp(—sz) and integrate from zero to infinity.
Next, let us define y (s) or L{y(z)}, the Laplace
transform, by

Liv@)l=y@e) = [ ey e, (10)
0
Ly () =v (), (11)
then Eq. (4) becomes
[ e (d/da?)dz+2a72 e~s=U (2 )¢ (2 )dx
=—K¥(s). (12)

Using expression (A10) of the Appendix for the
Laplace transform of the derivative and rearrang-
ing the terms we get

Liy(z)} =y (s)
S

T eIk

¥(0)+ (s+ K%~ (0)

L LU (@ (2))
2+ K2

The wave function ¢ (z) in terms of its value
and its derivative at the origin [i.c., ¢ (0) and
¥'(0)] can be determined at once from Eq.
(13) by taking the inversec Laplace transform.
Proceeding in this way we verify by Eq. (11)
that the left-hand side of Eq. (13) is ¢ (z), and
that inverse Laplace transform of the first and
second terms of the right-hand side are given by
(A6) and (A5), respectively. Thus,

Y(x)=y¢(0) cos(Kz)+y'(0) sin(Kz)/K
—2a LA LU ()¢ ()} /(s*+ K] (14)

Since the wave function ¢ (v) must satisfy
Bloch’s theorem, which means that ¢ (x) has to
represent travelling waves, then the boundary con-

—2a

(13)

Laplace Transform Method,

ditions expressed by Eqgs. (8) and (9) have to be
satisfied. 'or 0<x<a (that is, for z inside the unit
cell nearest to the origin), the boundary conditions
of Eqs. (8) and (9) relate the value of the wave
function and its derivative at z=a with those
values of the wave function at the origin, that
is,

¥ (a)=e*(0), (15)
¥'(a)=e"y'(0). (16)

Equation (14) with the conditions expressed
by Eqgs. (15) and (16) will give us a system of
two lincar equations on y(0) and ¢/ (0); this
system will have solutions only for definite
relations between the energy £ and the momentum
k, that is, the dispersion relation.

PARTICULAR CASES

The Free Electron

Let us consider the easiest case which cor-
responds to a free clectron. In this case there is
no lattice so U(xz)=0 for all values of 2. Then
the last term of Eq. (14) is zero and we get.

Yo(z)=y¢(0) cos(Kz)+¢'(0) sin(Kz)/K. (17)

Taking the value of Eq. (17) and its derivative
at the point x=a and taking into account the
boundary conditions of Eqs. (15) and (16), we
get a set of two linear equations in ¢ (0) and
¢’ (0). Thie set of equations will possess a non-
trivial solution if and only if the determinant
of the coefficients of ¢ (0) and ¢’ (0) is equal to
ZEro:

cos (Ka)—e'te sin (Ka)/K
Ag= ={).
—e~ K sin(Ka) e cos(Ka)—1

(18)

To facilitate further calculations we have multi-
plied the derivative of Eq. (17) at z=a by
exp(—tka) on both sides. From Eq. (18) we
get

Ay =2 (coska—cosKa)=0. (19)
Then

Ka=lkax2xl (=0,1,2,---). (20)
Having in mind the definition of K in terms of E,
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we get the dispersion relation for free clectrons,

E.= (8/2m)[k£ (2nl/a) . (21)
Equation (20), which is the condition for the
determinant (18) to be zero, allows us to deter-
mine the constant ¥’ (0) in terms of ¢ (0), which
is in this case ¢/ (0)=¢(kx2xl/a)¥(0). When
this value is substituted into Eq. (17), we get

Yo(z) =¥ (0) expli(k£2nl/a)r].  (22)

The Monatomic Case

Let us consider now the monatomic case or,
as it is known, the Kronig-Penncy model. In
this model the monatomic crystal is made up
of equal atoms located at =0, q, 2a, 3q, ---. The
electrostatic potential of each atom is represented
by a Dirac delta function of strength P located
at the positions of the atoms and can be rep-
resented by

Ulz)=a i Ps(x—na). (23)

Yim-—C

The wave funetion of the problem can be ob-
tained from Eq. (14) where the last term now
is not equal to zero. It is easy to see that using
Eq. (23) we get

LUEW@) = [ o £ Pole—na)y (o)l
0

n=—5

=aP i e~y (na). (24)

n=0

The inverse Laplace transform which appears

cosKa—e#**— (2P/aK) sinKa

A1=

e%(—K sinKa— (2P/a) cosKa)

Solving this determinant we get the dispersion re-
lation

coska=cosKa— (P/aK) sinKa. (28)

1140 / October 1978

in Eq. (14) is

1 [ )

24 K?
[ IR i (na)}
aPl. {’zi SL+I(2

-] e—ena
=aP 'E)yb(na)L“ {82+K2}

sinK (z—na)

u(z—na), (25)

—aP 5 ¥(na)

where we used expression (A3) of the Appendix
to get the final term of Eq. (23). The step func-
tion u(z) is also defined in the Appendix. Con-
sequently, the wave function for the monatomic
case is

Yi(x)=v¢(0) cosKx+y¢' (0) sin(Kx)/K

_2 E‘, Yi(na) sin[K (x—na) Ju(x—na). (26)
aK

n=0

The last term in the wave function above is
only different from zero when 0<z<a for
n=0, due to the property of the step function.
To apply the boundary conditions expressed by
Egs. (15) and (16), we proceed in the same way
as we did for the frec clectrons, but here we have
to notice that when we use Eq. (16) the last
term of Eq. (26) contains the product of the
sine, the derivative of the step function, which is
the Dirae delta function, and that this product is
always zero. In this way we get the determinant
of the coefficients of ¥ (0) and ¢’ (0) which is

sin(Ka)/K
(27)
e~ cos(Ka)—1

Combining the equation which corresponds to
the first line of the determinant with Eq. (28),
we obtain a relation between ¢ (0) and ¢’ (0)



and this relation when introduced in Eq. (26)
gives the complete wave function of the problem.

It is instructive to observe that the strength
P of the Dirac delta function is related to the
binding strength of the electron. To see this we
consider two extreme cases: P equal to zero, in
which case Eq. (28) transforms into Eq. (19)
for the free electron, and P going to infinity,
in which case the solutions of Eq. (28) are finite
if and only if sinKe=0, which means Ka=nr,
(n=0, 1, 2, 3, --+). This last case corresponds
to the energy levels of a particle bound to an
infinite barrier potential.

Diatomic Case

In the diatomic case there are two distinet types
of atom per unit cell. Each atom is represented
by a Dirac delta function of strength P, and P,
located at 0, +a, +2a, --- and at fua, a+0Ge0,
2a+Bya, -+ respectively, where 0<g8,<1 and
B is taken to be zero. The potential energy of
the whole lattice is then

Ux)=a i P (z—na)

n=—00

ta 3 Pale— (n+g)al

n=—o0

) 2

=a 3, 2. P#[z— (n+86:)a].

n=—00 =1

(29)

In the particular case of S2=3%, the model
expressed by Eq. (29) is useful to represent the
zincblend structure in the [1117 direction, or
else to represent NaCl in the [100] direction
when B;=3%. It is easy to see that substituting
Eq. (29) in Eq. (25) and taking this result into

cosKa—e*e¢
Az =

Laplace Transform Method

Eq. (14), we get for the wave function

Yo (2) =y (0) cosKz+¢' (0)[sin(Kz)/K]
2

T JK i Pz (na) sin[K (z—na) Ju(z—na)

n=0

2 ]
X > Paps(na+pea)

n=0

Xsin[K (z—na—Bsa) Ju(z—na—Ga). (30)

If we restrict the values of z to 0<z<aqa, we
verify that the only contribution to the sums of
the right-hand side of Eq. (30) comes from the
term n=0 due to the properties of the step func-
tion. Comparing the wave functions for the
diatomic and monatomic [Eq. (26)] cases we
see that they differ by

Yo (2) =y1(x) — (2/aK)Pabs (Baa)
Xsin[K (£ —G:0) Ju (z—B:a). (31)

It is interesting to notice that this difference
only happens for points z such that 2> 8.a, that
is, for points = located at the right side of thesecond
atom in the unit cell. At the left of this atom the
two wave functions coincide. This is a consequence
of the fact that the range of the potential in the
Dirac delta function model is practically zero.

In applying boundary conditions expressed by
Egs. (15) and (16), we observe that to form the
determinant of the coefficients of ¢ (0) and ¢/ (0)
we need the value of the wave function - ()
at 2=p.a. But from Eq. (31) it is easy to see
that

Yo (Bea) =1 (Bear), (32)

where ¢1(B:¢) can be obtained from Eq. (26)
with z=ga. For this value of # the last sum in
Eq. (26) is only different from zero for n equal
to zero, due to the fact that the argument of the
step function u{(B:x—na) is always negative for
n not equal to zero. With this in mind, ¢, (8sa)
i8 obtained in terms of ¢(0) and ¢’(0), and we can
write the determinant of the coefficients as

[sin (Ka)/K1+¢

=0, (33)

e~*[ - K sin(Ka)+¢s] e~ cos(Ka) —1+e~t*ag,
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where
¢1= (2P1/aK) sinKa-- (2P,/aK) cos (KBxa) sinK (¢ — Baa) + (AP1Ps/a?K?) sin(KBya) sinK(a—psa), (34)

¢2=— (2P5/aK) (sinKBsa/K) sinK (a—Bsa), (35)

¢3=— (2P1/0a) cosKa— (2Py/aK) cos(KBae) cosK (a—Bsa)+ (4P1Ps/a2K) sin (KBsa) cosK (a—Ba),
(36)

¢u=— (2P2/aK) sin (KB:a) cosK (a—Bea). (37)

This determinant and others much more complicated that may appear are written in this way tofacilitate
their solution. We can see at once that the terms ¢, ¢o, ¢s, ¢1 involve the strength of the potential,
and that they arise due to the introduction of one or more atoms inside the unit cell when compared to
the free electron case. In a general sense we can say that whatever is the number of atoms per cell
in the one-dimensional model, the terms of the main diagonal of the determinant will give the contribu-

tion

and the terms off diagonal will give

Then

Ap=D1+D2=2 coska—2 cosKa—~ (¢1+¢s) e

Dy=ei—2 cosKa-+e e costKa— (¢1+ ) +e~ % (¢1+a) cosKa+dios |, (38)
Dy=c¢"*s gin?Ka—e~*[ ¢3 sin (Ka) /K — ¢ K sinKa-+ ¢ogs | (39)
X (¢14¢4) cosKa+dpida— s sin (Ka)/K — ¢ K sinKa+deps | =0.  (40)

The solutions that we are interested in are
those which represent travelling waves [Eq.
(8)] and this implies that the number & must
be real. Of the two possible solutions of Eq.
(40), the one which gives k& real is the one which
corresponds to the cancellation of the coefficient
of exp(—ika). Imposing this condition on Eq.
(40) we obtain, for the general case, the dispersion
relation

coska=cosKa+ (¢1+¢2)/2. (41)

In the case under consideration (that is,
diatomic case with two atoms per unit cell) Eq.
(41), with the values of ¢; and ¢ given by Eqs.
(34) and (35), respectively, will give

coska=cosKa—[ (P1+P:)/aK ] sinKa

+ (2P1Py/a?K?) sinK B0 sinK (a—pBea). (42)
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GENERAL CASE

As we mentioned before, the dispersion rela-
tion Eq. (41) for any one-dimensional periodic
structure, based on Dirac delta functions, depends
only on ¢; and ¢.. Consequently, we can get the
energy versus momentum relation for an arbitrary
number p of peaks per cell or p distinct atoms per
unit cell. To this end, let B1a, Bea, -+ -, 8,0 be the
locations of the atoms inside the unit cell (8;<1
for all 7), and let Py, Py, -+-, P, be the strength
of the Dirac delta function at those points,
according to Fig. 1. The potential energy for the
whole lattice can be written as

U)=a ¥ ¥ Polo—(m+8al, (43)

p=—00 =1

where 81=0. Placing this value of the potential in



Laplace Transform Method

Béo Baa u a .-

Fic. 1. The potential function U(z) for the general case of p distinet atoms per unit cell.

Eq. (25) we get

A0 I
L { 1K }—aZZPI\p(na—{—ﬂta)

n=0) i=1

sinK (z—na—B;a)
K

u{z—na—pa). (44)

So the wave function expressed by Eq. (14) and
corresponding to p atoms per cell and for & located
in the unit cell nearest to the origin, that is
0<z<a, is given by

¥p(z)=v(0) cosKz+y' (0) sin (Kz)/K

2 Z .
— — 2 Py (Bia) sinK (z—Bia)u (x—Ba).
oK 5

(45)

This wave function must satisfy the boundary
conditions as stated in Eqs. (15) and (16) to
represent travelling waves. When we apply these
conditions we verify that in order to have only
two coefficients in Eq. (45), ¢ (0) and ¢’ (0), we
have to relate the value of the wave function at
the points fia, B¢, - -+, 8,6 with the value of the
wave funetion and its derivative at the origin.
It is easy to see from Egq. (45) and from the
structure of Eq. (13} that the wave function
corresponding to p atoms per cell is related to the
wave function for p—1 atoms per cell, and that
this relation can be written symbolically as [see
also Eq. (26)],

Vo(2) =vp1(x)— (2/aK)P, (By0)

X sin[K (x—Ba) Ju(z—pB,a). (46)

For all points z, such that =8,a withj=1, 2, -+ -,
p, we can write

Vo (B10) =¥p-1(Bja) (47)

and this expression is always true because for
j<p the step function makes the last term of
Eq. (46) zero, while for j=p, the sine is zero. In
a similar way we get

Vp1(2) =pe(z) — (2/aK)Pprbp 1 (Bpaa)

Xsin[K (z—fpa0) Ju (€ —Bpaa), (48)

which is the relation between the wave function
for p—1 atoms per cell and the wave funection for
p—2 atoms per cell. In a similar way we verify
that

‘pﬁ—l(ﬂfa’) :50:0—2(6]0’) .7=1; 27 ) p_l (49)

These recursion relations enable us to deter-
mine, for any number of distinet atoms per unit
cell, the wave function at the positions of the
atoms inside the unit cell in terms of the wave
function and its derivative at the origin. This
is what we need to calculate the coefficient of
¥ (0), which we called ¢;, when we use boundary
condition Eq. (15), and the coefficient of ¢'(0),
also called ¢s, when we use boundary condition
Eq. (16). With the values of ¢ and ¢, and with
the help of Eq. (41), we get the dispersion
relation for the case under study. Then the dis-
persion relation for a one-dimensional periodic

AJP Volume 41 | 1143



P. H. Santana and A. Rosato

structure with p atoms per unit ecell is

coska =cosKa— é&% sinKa+2 El E ( 15)2 sin[ K (8,—B:)a] sinK[1—~ (8;—8:)a]
—4 3 5 2 B0 Gk (5,- 807 sinlK (81— 8,)a] sinKT 1L~ (81— 8.)a]4-- -
i=1 g>1i I>j ( K)
(L2t PR K (300 - oK (8,8, )a]snK[1~ Byl (30)

APPENDIX

Table of Laplace Transform Used in the Text.!

The Laplace transform of a function f(x), for
real z, is a function y (s), also known as L{ f(z)},
where

y& =L@ = f@e=de (A1)

Given y(s) we can get f(z) by looking for a
function which satisfies (Al). Then the inverse
Laplace transform of a function y(s) is a func-
tion f(x) which satisfies

J@)=L{y(s)}. (A2)
If f(x) =L {y (s)}, then
L{ey(s)} =f(z—a)u(z—a), (A3)

where the step function  (x) satisfies:

u(r—a)=1
u(z—a)=0

if z>aq,
i z<a.
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If a1 and as are constants, we can show that

L {aws (s) +azye(s)} =anfi(v) +aafe(e).  (Ad)
We note that if y(s) = (s*+ K?2)~! then
~f(z) =sin(Kz) /K (A5)
and if y(s) =s/(s24+K?) then
f(x) =cos(Kzx). (A6)

Combining Egs. (A5) and (A6) with Eq. (A3),
we note that y(s) =¢=*/ (s?+K?) implies

f@)=[sinK (z—a)/KJu(z—a) (A7)
and y (s) =se~*/ (¢4 K?) implies
fx)={cosK(z—a)Ju(z—a). (A8)
We can also show that
L{df (z)/dx} = sy (s)—f(0), (A9)
Lid¥f () /da?} =s% (s) —sf (0) — (df/d)|a—o-
(A10)

1 F. B. Hildebrand, Advanced Calculus for Applications
(Prentice Hall, Englewood Cliffs, NJ, 1962).



