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By using appropriate gouge transformaiions one can
develop quasiclassical wavefunctions for charged particles
in a uniform magnetic field which have large amplitudes
only in the neighborhood of classical Larmor orbits centered
at arbitrary points in a plane perpendicular to the field.
Pairs of such wavefunctions are not orthogonal to each
other. Interesting geometrical relationships between these
solutions and the degenerate orthonormal sels of wave-
Sunctions in @ particular gauge can be found as a result of
evaluating overlap integrals. This has been done for both
the cylindrical and Landau gauges. In the cylindrical
gauge certain of the orthonormal wavefunctions correspond-
ing to different energies give identical probability distribu~
tions. Relationships between quantum and classical results,
and the effect of the uncertainty principle are discussed.

INTRODUCTION

The importance of gauge transformation A of
the type

A—A'=A+Vo (1)

in modifying the equations of motion of a charged
particle in a magnetic field has been pointed out
in a previous paper® hereafter referred to as (I).
In Eq. (1) A is the vector potential and ¢ an
arbitrary scalar function of position, called the
transformation function. The magnetic field is
given by the relation

B =curlA. (2)

In classical physics gauge transformations do
not affect particle orbits, but change the canonical

momentum p defined by the relationship
mp?/2=(1/2m) (p—eA)?,

where v is particle velocity, m the mass, and ¢ the
electric charge.

Schrodinger’s equation is derived by replacing
the components of canonical momentum p; by
differential operators

pi— (/%) (8/9¢:)

where ¢; are the canonically conjugate space
coordinates.

Both the Schrédinger equation itself and the
eigenfunctions obtained in solving it are influenced
by the choice of gauge and by the choice of
coordinate system.

There is, however, a general and readily verified
result? that if a wave function ¢ satisfies Schré-
dinger’s equation in some original gauge, then the
wavefunction

¥ =y exp (teg/H) 3)
satisfies Schrodinger’s equation in the transformed
gauge.

In the case of the motion of a charged particle
in a uniform magnetic field the solutions of
Schrodinger’s wave equation in any gauge are
highly degenerate.

This corresponds to the situation in classical
physics in which particles with a given energy of
motion in the plane perpendicular to the field
lines all perform circular orbits with radii equal to
the Larmor radius

ro=p./eB (4)
where p1 is the magnitude of the component of
momentum perpendicular to the field. The
centers of these orbits, which we shall call guiding
centers, may lie anywhere in the plane. The orbits
therefore contribute a degenerate set which may
be transformed into each other merely by geo-
metrical displacement.
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This is, however, not in general the case for the
degenerate orthonormal solutions of Schrédinger’s
equation in a particular gauge; nor do most of
these wave mechanical solutions bear any im-
mediate resemblance to the classical orbits, even
when the quantum numbers become large.

This paper is concerned to investigate the
relationships which do exist between the quantum
and classical results.

THE CYLINDRICAL GAUGE

We assume that the uniform magnetic field
has a single component B, in the positive 2 direc-
tion. The basic cylindrical gauge is then defined
by the relation

A=A,=3BAr (5)

where r is a radius vector from an arbitrary
origin, called the gauge center in the plane
perpendicular to the z direction.

In cylindrical polars Eq. (5) takes the form

Ac=%B(0; 7, 0)7 (6)
or in Cartesian coordinates,
A.=3B(—y,2,0). (7

Since the origin used in defining r is quite arbitrary
we could equally well refer to a different origin
and write

A, =[3BA(r—R)] (8)

where R is a vector displacement of the origin.
This shift of origin may be treated® as a gauge
transformation from Eq. (5) using the trans-
formation function

¢=—(3B)- (RAT). (9)
CYLINDRICAL GAUGE SOLUTIONS

All the results in this gauge have been derived
on the assumption that e is positive. If ¢ is negative
(electron), the sign of [ must be changed through-
out.

In the basic cylindrical gauge Schrédinger’s
equation for motion in the (r, 8) plane takes the
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Van Vleck? has shown how closely this equation is
related to the Schrodinger equation for a two-
dimensional harmonic oscillator. Using this simi-
larity one easily finds that the allowed values of
the energy of motion perpendicular to the field
are given by the expressions

(10)

where [ is an integer introduced to give single-
valued wave functions as functions of 4

Yni=e"Y R (r) (12)
and n is a further positive integer which arises
from the boundary conditions on R.

If we write o= (eB/%) and (2mE ,/fi?) =¢ we
find

{—(ra/ar) (rd/or)

+-H(e) PR=aR, (13)
which has the normalized solutions
Ropy=Cryr— (1442742 oxp (a?r?/4) (rd/dr)™
X[ exp(—a%/2) ], (14)

for which e=e,= (2n+|1|—I4+1)%%? and Cy; is
the normalization constant given by
alll+1

T [2m2 it ([ | 4n) 1] (15)

Cnl

Solutions (14) are an orthonormal set.

From Egs. (14) and (15) it follows that R,
depends on the modulus of I and not on its sign.
Hence, from Eq. (12) ¥ui™¥a:;, the probability
density distribution, is the same for given n for
azimuthal quantum numbers +{ and —!I.

On the other hand Eq. (11) shows that the
energy is different in these two states. Many
quantum systems are known which have de-
generate states with different probability dis-



tributions but the same energy. States with
different energies but the same probability dis-
tribution are less commonly found. (It is easily
verified that the radial probability distributions
on orbits of types A and B in Fig. 2 are also
identical in the classical limit.)

Equation (13) also shows that for given = all
the positive [ states are degenerate, i.e., they all
have the same energy. When [ is negative, how-
ever, we find from Eq. (11) that

Elnl=[2(n+l l ])+1](ﬁw1/2)-

Clearly, each of these states will have the same
energy as a state of positive I and quantum
number »n' such that »’=n+|[|. Since n and | 1]
are both positive integers it follows that at any
given energy there are only a finite number of
distinet states with negative I. The minimum
value of | 1| is zero, the maximum value is »n’
for these states. There are therefore only (n'+1)
of them.,

We next consider those states for which n=0
and for which ! is negative. For these states
n'=|1| and the energy is given by

Boy= (2 | 1|+1) (fiwr/2). (16)
The wavefunction then takes the form
Yo.p=aliH/[2x20 (] L]) 42
Xexp(—i|1|8)r't exp(—a®?/4). (17)

It is easily shown? that the radial probability
density distribution e, *¢o,; derived from Eq.
(17) is peaked near

r=(2]1]4+1)"2/a
and has a characteristic radial width

Ar~1/a. (18)
Thus 7 is identical with the classical Larmor
orbit radius for a particle whose energy is given
by Eq. (16) and the width Eq. (18), is similar
to the width of the minimum wavepacket dis-
cussed in (I).

We therefore regard Eq. (17) as a quantum
mechanical representation of a Larmor orbit

Charged Pariicles in a Uniform Magnetic Field

centered at the origin. Since this solution is closely
analogous to the classical solution for a particle
circulating round the origin, we call (17) a
“quasiclassical solution” and we expect there to
be other solutions corresponding to classical
orbits centered at points away from the origin.

We may substitute [r exp(i#) —R exp (i) ]
directly in place of r¢? in (15) and obtain another
similar wavefunction centered at (R, 6) but this
will be a solution of Schrodinger’s wave equation
in a different gauge. The center of the gauge will
now also be at the point (R, 6).

We cannot, therefore, compare the result of
making this substitution directly with solutions
(15) for n=£0, which were derived in the original
gauge. If, however, in addition we make a gauge
transformation and multiply the displaced wave-
function by the factor exp (7e¢/%) where

¢=3BRAr) =3B |R|| 7| sin(6—a,).

Equation (9) indicates that we will obtain a wave-
function representing a displaced Larmor orbit
centered at the point (R, 6,) but expressed in the
original gauge.® By this process the gauge center
has been separated from the guiding center of the
the Larmor orbit.

The resulting wavefunction is

You(R) =Coexp(—i|1]8)
X {r—R exp[<(6—8,) ]}
Xexp(— (a?/4) {r*+R2—2rR exp[i(6—86,) 1}).
(19)

The wavefunection in Eq. (19) is not orthonormal
to that in Eq. (17) so that in quantum theory
displaced orbit solutions are not linearly inde-
pendent of each other. However, we can investi-
gate the extent to which the solutions (19) overlap
with the orthonormal set (14) by expanding
Eq. (19) as a linear combination of these solutions.
We keep the particle energy constant throughout.
We put
Yo (R) = 2 Apiibnr

nll

where

0 27
Apr = f f Y Xor (R) rdrd
0 a
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Fig. 1. The radial probability distribution for cylindrical
gauge eigenfunctions for n=3, I = 5. The classical radial
probability distribution is also shown.

and find

Aniy =Kp o RN exp[i(l-l—l’)ﬂo]

Xexp(—a2R2%/4), (20)
where K., |3 involves a sum of definite integrals
over r and 8 but is independent of K or 6.

| Anue |%is the probability that a particle with a
displaced Larmor orbit-like wavefunction whose
guiding center is at (R, ) is simultaneously in
the eigenstate .. This is clearly a function of the
position of the guiding center. The a prior:
likelihood of the guiding center lying by chance
between a distance R and R-+dR from the gauge
center, which is an arbitrary point, is simply
proportional to the element of area 2rRdE.

The probability of finding a particle in one of
the states ¥.rr, given that it is in a quasiclassical
orbit somewhere in the field, is therefore propor-
tional to

P(R)AR=27R | A |n1?dR
— 27rKn| I l’R2(| +1)+1

Xexp(—a?R2/2)dR. (21)
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P(R) is sharply peaked at values of B near to the
value

R=Ruux=[2(|1|+V)+1]"*/a. (22)
But from Eq. (18) [(2|1|+1)/a?=rs, the
Larmor radius of the particle. Hence,

Rmax = [TL2+ (2l’/0l2) ]112. (23)
It follows that a particle in a quasiclassical state
whose guiding center is displaced by a distance
close t0 Runax from the gauge center, and which is
therefore closely analogous to a ‘‘classical”
particle with. a guiding center at this point, has a
high probability of being found in the state ¥,y. A
particle whose guiding center lies elsewhere has a
very much lower probability of being in this state.

There is therefore a close relationship between
states ¢, for which n30 and classical orbits
centered away from the gauge center.

Rearranging Eq. (23) one finds

U=%c?(Rmax®—7r1%), (24)
and we note that I'>0 implies Rnux>7z, a
guiding center more than one Larmor radius
from the gauge center while I’ <0 implies Rpax <71,
a guiding center less than one Larmor radius from
the gauge center.

For I’ <0 we have assumed n-+1'=]1] and for
>0, n=| 1|, in order to ensure that the energies
of the states ¥,» and Yo, are the same.

Multiplying Eq. (24) on both sides by % yields

il = (83/2) (Rmax2_TL2> .

Putting pe=7#l’ yields a result identical with what
one finds using classical mechanics in the same
gauge.

The geometrical relationship between the classi-
cal orbits and the probability distributions given
by wave mechanies are illustrated in Figs. 1 and 2.
The radial width of the probability distributions
7| Y |2 38 just 2rz.

TIME DEPENDENCE

Including the time dependent factor in the
solutions (12) gives the travelling wave expres-
sions

Yar =Rar exp{d[V0— (Enrt/f) ]}, (25)



The R,; are real so that the wavefronts are

always radial.
Wavepackets constructed from solutions (25)
travel with an average group angular velocity

w =AY d(Enr)/dl"]

round the gauge center. Using Eq. (11) we find
that

>0,
I'<0. (26)

wy=0 for

wy=—wyr for

This group angular veloeity is the closest
quantum analog to the classical angular velocity
of a particle around the gauge center. We see that
the results (26) are consistent with the geometrical
picture illustrated in Fig. 2. States for which I’ >0
correspond to Larmor orbits which do not embrace
the gauge center and therefore the particles con-
cerned appear to remain near a fixed azimuth
angle, and w,=0. States for which I'<0 cor-
respond to Larmor orbits which surround the
gauge center. Since the period of the classical
orbital motion is 2w/wr, the magnitude of the
average angular velocity around the gauge center
in such orbits is wr. The negative sign in Eq. (26)
gives the correct sense of rotation for positively
charged particles.

A SIMPLE MODEL

As n and I’ become larger, the radial probability
function 7. *. becomes increasingly concen-
trated into two rings of radii R=4r; where R is
given by Eq. (22).

We can construct a simple mechanical model of
the classical limit of the probability distribution in
the following way :

(1) Cover a horizontal tray with a uniform
layer of sand.

(2) Represent a particle of given energy
ecirculating about any point by a rotating paddle
system which piles up a circular ridge of sand of
radius rz. (To obtain the maximum degree of
simulation the paddle should rotate with angular
velocity wr about the guiding center.) The
circular ridge of sand will simulate the probability
distribution [¥(R, 6,) J*

Charged Particles in a Uniform Magneiic Field

Scale, unit 1/(2

F1e. 2. The geometry of cylindrical gauge wavefunctions.
The eigenfunctions for n=3, {==+5 are approximately
bounded by the dashed circles and have identical radial
probability distributions. For positively charged particles,
eigenfunctions with negative [ are closely related to quasi-
classical orbits of type A which enclose the origin and eigen-
functions with positive I to the orbits of type B which do
not. The reverse is true for negatively charged particles,
The magnetic field is assumed to be upwards, perpen-
dicular to the plane of the diagram.

(3) Now attach the center of the rotating
paddle system to an arm of length R, one end of
which is fixed at the chosen gauge center.

(4) Rotate the arm around the gauge center.
The sand will now produce a distribution which
looks like | ¥x: |2 (The model does not represent
the overlap between ¢, and the quasiclassical
orbits function centered at radial distances other
than R. As the eclassical limit is approached
this overlap becomes smaller and smaller. Nor does
it indicate the oscillating probability distribution
between R-rr. This also decreases in relative
importance as n increases.)

LANDAU GAUGE

The same overlap integral technique can be
used to see how displaced orbit wavefunctions are
related to the Landau gauge wavefunctions
[see (I)]. To do this one has to write the displaced
orbit wavefunctions in the Landau gauge. The
transformation function between the cylindrical
and Landau gauges is

¢ =3By =3Br? cosd sind (27)

for which A;=A.+ V...

AJP Volume 40 / 1677
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Fia. 3. A typical “strip” wavefunction in the Landau
gauge. It is approximately bounded by the dashed lines.
One of the corresponding classical orbits is shown. The
quantum and classical probability distributions in the x
direction are shown. The probability distribution is uniform
in the y direction in this gauge for all eigenfunctions.

One has therefore to multiply Eq. (19) by
exp(ie¢,1/f) and change to Cartesian coordinates.
The geometrical relations between the Landau
wavefunctions and the quasiclassical displaced
Larmor orbit wavefunctions which give the maxi-
mum overlap are illustrated in Fig. 3.

The Landau gauge solutions are similar to what
one would get by moving the gauge center in the
cylindrical gauge to an infinite distance along the
z axis.

GENERAL COMMENTS

The probability distributions .. *¥, are
independent of “¢”, i.e., they are uniform in
azimuth around the gauge center. Similarly, the
Landau wavefunctions give uniform probability
distributions in the “y”’ direction.
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These results are simple consequences of the
fact that the state ¢, corresponds to an exact
value for the canonical momentum pe=7%l’, and
the Landau states give exactly defined values to
py="iky. It follows from the uncertainty principle
that the respective canonically conjugate position
coordinates, § and y, are indeterminate.

The probability distributions in the other
coordinates, r and z, are confined to belts whose
widths are closely similar to the diameters of the
classical orbits 2r.. As the quantum numbers
increase the distributions are increasingly con-
centrated on two narrow strips separated by 2r;.

Only the basic cylindrical gauge wavefunctions
Vo; and the displaced orbit wavefunctions derived
from them are geometrically similar to individual
classical orbits. The other wavefunctions cannot
be interpreted as describing the range of motion
of a single particle, since a particle is not expected
to be found far from the region of its classical orbit.
The large geometrical size of the Y, is merely the
result of lack of information about the initial
location and direction of motion of the “particle.”
No information about these has been inserted into
Schrodinger’s equation and its solution beyond
setting bounds to the “box”’ containing the par-
ticle. To obtain a close wave mechanical analogy
to the motion of a single particle one must insert
some additional information about the initial con-
ditions by the construction of an initial wave-
packet. This is done in Ref. 1 and the result is
indeed to show that such a wavepacket rather
closely follows the motion of a classical particle
within the limits of precision set by the un-
certainty principle.
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