N
&:(smﬂ'm ()JI’PHYS]CS

Position Expectation Values for an Electron in an Infinite Tilted Well
Noble M. Johnson and John N. Churchill

Citation: American Journal of Physics 38, 487 (1970); doi: 10.1119/1.1976371

View online: http://dx.doi.org/10.1119/1.1976371

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/38/4?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Visualizing the collapse and revival of wave packets in the infinite square well using expectation values
Am. J. Phys. 68, 410 (2000); 10.1119/1.19455

Correlation Studies on H 3 + . Il. Electron Densities and Expectation Values
J. Chem. Phys. 55, 4276 (1971); 10.1063/1.1676748

Error Bounds to Expectation Values
J. Chem. Phys. 55, 2657 (1971); 10.1063/1.1676476

Lower Bounds for Expectation Values
J. Chem. Phys. 51, 4767 (1969); 10.1063/1.1671864

Error Bounds for Expectation Values
J. Chem. Phys. 45, 1847 (1966); 10.1063/1.1727846

Explore the AAPT Career Center -
access hundreds of physics education and

other STEM teaching jobs at two-year and
four-year colleges and universities.

%:HEI
http://jobs.aapt.org mﬁ



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://jobs.aapt.org/
http://scitation.aip.org/search?value1=Noble+M.+Johnson&option1=author
http://scitation.aip.org/search?value1=John+N.+Churchill&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.1976371
http://scitation.aip.org/content/aapt/journal/ajp/38/4?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/68/5/10.1119/1.19455?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/55/9/10.1063/1.1676748?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/55/6/10.1063/1.1676476?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/51/11/10.1063/1.1671864?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/45/5/10.1063/1.1727846?ver=pdfcov

AMERICAN JOURNAL OF PHYSICS

VYVOLUME 38, NUMBER ¢ APRIL 870

Position Expectation Values for an Electron in an
Infinite Tilted Well

NoeLe M. JornsoN anxp Jomn N. CHURCHILL
University of Colifornia, Davis, California 95618
(Received 18 August 1969; revision received 10 November 1969)

A numerical technique is used to determine the manner in which the expectation values of
position for an electron in an infinite tilted well depend on the potential gradient and quantum
state of the system. The results are compared to the eclassical case and to the exact analytic
expression for the special case in which the total energy of the electron is equal to the maxi-

mum value of the linear potential.

I. INTRODUCTION

An attempt to understand and explain a
physical phenomenon often begins with the
consideration of a highly idealized, simplified
model amenable to analytic techniques. Though
such models do not provide a complete deseription
or explanation of a phenomenon, they are quite
effective in illustrating fundamental coneepts.
Henee, in an introductory course in quantum
mechanics or solid-state physics, the problem of &
single particle in an infinitely deep square-well
potential (ISW) is used to illustrate the concept of
discrete energy levels. ILikewise, the Kronig—
Penney (KP) meodel of a periodic potential is
highly instructive in presenting the concept of
energy bands for electrons in solids. This paper
concerns a simple physical model which, although
less familiar than the ISW or KP models, never-
theless demonstrates some interesting features
which the more familiar models do not.

This model, which is defined by the potential
energy function

V' (x) =e8'z, 0<z<L

oe)

(1

is called the “infinite tilted well” (ITW) because
V' (z) may be regarded as a superposition of an
ISW potential and a “tilted” potential e&'z. Since
the infinite square well is often used as an idealized
model of an eleetron in a “one-dimensional metal,”
one should be able to use the I'TW ag an idealized
model of an electron of charge —e¢ in a similar
environment but with the addition of a uniform
electric field &

Specifically, this article presents numerical
results for the expectation value of position (x) of
an electron in an ITW and compares these results

, elsewhere,

with the time average of position for the cor-
responding classical problem. Since calculations of
(x) have previously been limited to the special
case in which the total energy of the particle is
equal to the maximum value of the linear po-
tential,!? and since no such limitation is imposed
here, the present work represents a generalization
of the previous discussions. Thus, the purpose of
this paper is not only to further clarify the rela-
tionship between the quantum-mechanical and
the classical results but to furnish a more encom-
passing view of the entire ITW problem as well.

In contrast to most of the common examples of
quantized systems (e.g., the infinite square well,
the harmonic oscillator, and the hydrogen atom),
the ITW does not possess inversion symmetry.
For this reason, the expectation value of position
does not in general fall at the eenter of the well as
it does in the more familiar cases. In fact it will be
shown that for the ITW this value depends not
only on the well parameters &' and L but also on
the quantum numbers designating the stationary
states of the system. This is one of several rather
distinetive features which makes the ITW
problem a valuable example of elementary
quantum mechanics.

Although the techniques presented by Churchill
and Arntz® are ugeful for finding energies and wave
funections for the I'TW potential, they are not the
most convenient way to obtain values for ().
Hence, a numerical algorithm was developed for
calculating these values. For a given set of well
parameters, this program computes the energy
eigenvalues and wave functions and calculates the
expectation value of position for each stationary
quantum state. This algorithm is diseussed briefly
in Sec. IT. In See. III the results of the analysis are
presented and compared to corresponding results
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488 N. M.
for the classical time average of position. In Sec.
1V an exact analytic expression for (x) is presented
which is valid for the special case in which the total
energy of the electron is equal to V' (L). Numerical
values calculated from this exaet analytie expres-
sion confirm the accuracy of the numerical results
presented in Sec. ITI.

II. NUMERICAL SOLUTION

For the potential well defined by Eq. (1), the
time-independent Schrodinger equation is

[— (#/2m) (#*/d2®) + V' (x) W(z) =EY(x). (2)
By setting

&=2me&’ /h* (3a)
and

E=2mE' %, (3b)

Eq. (2) can be written in the more eonvenient
form
[—&/d*+V (z) W (z) =By (z), (4)

where

V(z) =[2m/RB]V' (x).

The boundary conditions require that ¢ vanish
at the edges of the well, ie.,

¥(0) =0 (5a)
and

Y (L) =0. (5b)

Any nontrivial solution of Eq. (4) which satisfies
Egs. (5) is an acceptable eigenfunction or wave
funetion and represents an allowed state of an
electron in an I'TW. The eigenvalue F correspond-
ing to a given wave function is the (rationalized)
total energy of an electron in that state.

In order to determine the energy eigenvalues and
wave functions numerically, the eigenvalue prob-
lem was converted to an initial value problem.
This initial value problem is defined by Eq. (4)
together with the #nitial conditions

¥(0)=0 (6a)
and

d/da |o—o=C, (6b)

where C is some nonzero constant. The wave
funetions could be normalized, if desired, by an
appropriate choice of C.

The intial value problem defined above is
solved by first selecting a trial value for E and
then performing a numerieal integration of Eq. (4)
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subject to the initial conditions given by Eqgs. (6).
The resulting solution is then examined to deter-
mine whether or not it satisfies the boundary
condition at z=L as given in Eq. (5b). If this
boundary econdition is nof satisfied, then by
iteration the numerical integration is repeated for
a succession of trial values of energy until an
acceptable wave function is finally obtained.
[Actually Eq. (5b) eannot generally be satisfied
exactly when (L) has been obtained by a numeri-
cal integration. In order to satisfy this boundary
condition, 1t is necessary only to make |y ()]
sufficiently small compared to the maximum
magnitude of the wave function inside the well.]

Onece a wave function is known, the quantum
number n can be determined® by counting the
number of peaks of the function |¢(z)| in the
interval (0, L) and (x), can be calculated from
the formula,

L L
@h= [ wlva@ iz /[ [ 1a@Pae @)
0 0

by means of Simpson’s rule.* The subseript % in
() 1s included to emphasize the dependence of
the expectation value of position on the state of
the system.

The particular integration technigque which was
used to produce the results presented in Sec. III
was the four-step Adams—Bashforth-Moulton
(ABM) predictor—corrector method for evaluating
systems of first-order ordinary differential equa-
tions. [ Equation (4) can be written as a pair of
coupled first-order equations. ] Since this technique
is adequately described elsewhere in the litera-
ture,*s no detailed description will be given here.
Two points should be made, however, regarding
the use of this method.

(a) As is characteristie of any diserete variable
technique, the ABM method furnishes an approxi-
mate solution to Eq. (4) only on a discrete set of
points between =0 and z=L.

(b) The ABM method is a multistep method
and, as such, requires a special procedure for
starting the integration. Thus, given only the
initial conditions specified by Eqgs. (6) one must
begin by estimating the values of the solution at
the first three discrete points beyond =0 using a
single-step numerical integration technique. After
this is done, the more stable ABM method is used
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to continue the integration. For the I'TW results
presented in Sec. III, the fourth-order Runge—
Kutta method was used o obtain these starting
values.

III. NUMERICAL RESULTS

For a given pair of well parameters, & and I,
the energy eigenvalues E,, the wave functions ¢,,
and the expeetation value of position (x), for each
¥, were computed using the techniques described
in See. IL. The expectation values of position for a
continuous range of values of § can be displayed on
a single graph by plotting (z), as a function of the
dimensionless energy ratio

t=F/eL. (8)

This type of plot is especially convenient for

§

2.0 -

-
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Fra. 1. Position expectation values as functions of £ for
quantum states n=1, 2, and 10 of an ITW with L=1.
The rationalized potential energy function V(z) and the
classical time average of position F.; are also shown.
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displaying the relationship between the classical
and the quantum-mechanical results since the
classical time average of position £ is a unique
function of £ Analytie expressions for &, are
derived in the Appendix.

Tigure 1 displays & vs (), for the first, second,
and tenth stationary quantum states. The ration-
alized potential energy function V(z) and the
classical time average of position are also shown.
All numerieal calculations were made for a well of
unit width, L=1. For £K1, {z), conforms to &,
for all states. As £ increases in value, the curves
begin to diverge from the classical case. As n
increases, the point of divergence oceurs for larger
values of £ All the curves, including ., asymp-
totically approach the center of the well as £
approaches infinity. From Fig. 1, it is also evident
that for the ground state, n=1, (x); approaches
the value £ asymptotically from the left half of the
well, whereas all other states approach from the
right. Thus, the ground state has a behavior which
is unlike that of all other states.

In Fig. 2, a magnified version of Fig. 1 is shown
for the first, second, third, fourth, sixth, and
tenth stationary states for values of ¢ in the
vicinity of £=1. This expanded view illustrates
that as n increases, the curves for (x), conform
more and more to Z,; in aeccordance with the
correspondence principle. In Sec. IV this will be
shown to be true analytically for the special case
£=1. Both Figs. 1 and 2 illustrate rather dramati-
cally the manner in which the expectation value of
position for an electron in an ITW potential
depends upon the quantum numbers ag well as the
slope of the linear potential,

IV. ANALYTIC SOLUTION FOR E=8L

For the special case in which an energy eigen-
value K, is equal to the maximum value of the
linear potential (ie., E,=8L), Dymski! found
that Eqgs. (4) and (5) could be solved in closed
form and the solutions normalized. The resulting
wave functions are

¥u(@) = A (L—2) s 3812 (L—2)*?],  (9)

where 4 is the normalization constant and J,()\)
is the Bessel function of the first kind or order ».
At the right-hand edge of the well, z equals L and
hence ¢,(L) is identically zero as required by
Eq. (5b). Sinece ¢, must also vanish at the left-
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F1c. 2. Position expectation values as function of £ in the
vicinity of £ =1 for quantum states n=1, 2, 3, 4, 6, and 10.
The classical time average of position &.; is also shown.
These results are for an ITW with L=1.

hand edge of the well it follows that Eq. (9) is an
acceptable solution only when

g1 =1, (10)

where r, is the nth root of the one-third-order
Bessel function.® These roots are assumed to be
arranged in the order of ascending values so that
the subscript » in 7, continues to denote the
quantum number. Thus, for a given well width L
only discrete values of & yield the special case
E,=¢L.

Using Eqs. (9) and (10), the normalization
constant and the expectation value of position
can be calculated. Numerical values for the ex-
pectation of position may then be computed from
the exact analytic expression and compared to
those presented in Sec. ITI. Following Dymski’s

AND 7.
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method, the normalization constant and the
expectation value of position are found to be,
respectively,b-?

A ={[LJ 23(ra) P—3%3/&23[ T'(3) T} 12

and
(€)n | Bumgr=L—L[J /s (rs) 1*/3{[J 213 (rn) P — R},
(12)

(11)

where
R=3t8/e¥s12[T(}) I

and T()\) is the gamma function. It follows from
Egs. (10) and (12) that the expectation value of
position depends on the quantum number of the
state. In addition, it may be seen from Egs. (10),
(12), and (A3) that, as the quantum number »n
approaches infinity, the expectation value of
position reduces to the classical time average of
position. That is,
lim (x),=3%L =%,
Table I lists values of (z), and & for the first
eight stationary states as calculated from Egs.
(10) and (12). These values, calculated from the
exact analytic expression, confirm the numerically
obtained values presented in Sec. IT1. This agree-
ment is most apparent when the numerical data
of Table I are compared with the expanded curves
in Fig. 2.

£=1.

V. CONCLUSIONS AND DISCUSSION

The expectation value of position for an electron
in an ITW potential depends on the quantum
numbers denoting the stationary states of the

TapLe 1. Values of {z)» and § obtained analytically* for
the special case £=1.

n & (Tn n & (Z)n
1 18.96 0.4590 6 T777.70 0.5790
2 81.89 0.5222 7 1062.68 0.5846
3 189.22 0.5475 8 1392.08 0.5890
4 340.97 0.5621 : : :
5 537.13 0.5719 o w 0.6667b

2 These values were computed from Eqs. (10) and (12) for an ITW
of unity width, L =1. The numerically-computed values of {z}, shown
in Figs. 1 and 2 agree to four significant figures with the corresponding
values listed above.

b This is also the value of the classical time average of position for
L=1,
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system in addition to the system parameters. This
unusual property was illustrated with numerical
results and verified with exact analytic results for
the speeial case in which the total energy of an
electron is equal to the maximum potential energy
inside the well. From the analytic expression for
this special case, it was found that the expectation
value of position approaches the classical time-
average of position as the quantum number
approaches infinity. The numerical results also
demonstrate this behavior.

The ITW model should find application in
introductory courses in quantum mechanics as an
example of a bound-state problem in which the
potential-energy function does not possess even
symmetry. It should also be of use in solid-state
physies courses to enable the student to gain
insight into the effect of an applied electric field
on the wave functions of electrons in solids. In
addition, the numerical solution of the one-
dimensional, time-independent Schrédinger equa-
tion using the algorithm outlined in See. II
affords an excellent exercise for a physical science-
oriented computer programming course.

APPENDIX

Classically, the total energy of a particle of
mass m and charge —e¢ placed in an ITW potential
is

B =Lmp?+-e8'z,

(A1)

where # is the velocity. The force acting on the
particle is

m(dv/dt) = —e8', (A2)

If at a time {=0 the particle is at =0 with v=y,,
then from Eqs. (A1) and (A2) the displacement
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of the particle with time is

xr==(—e&'/2m) B+ vy,
where
vo=(2E' /m)2.

For E'<e&'L, the time required to travel from
z=0to x=E"/e& is

b =mug/e&’

and, in terms of the dimensionless energy ratio
£=F’"/¢8 L, the time average of position is

= ()" f edt=3tL, <1 (A3)
0

For E'>e8'L, the time required to travel from
z=0toxz=L1is

Zz = (m/eS') [UO“' (002_268/L/m> 1/2:|;
and

Fa= ()7 [ el =3LLGEHD) — (2, 21
0

(A4)

The results given in Kgs. (A3) and (A4) are
shown in Figs. 1 and 2 for the case L=1.
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