AMERICAN
AAPT JOURNAL

FHYSICS ED ] OIPHYS]CS
e — S

Phase Shifts for Scattering by a One-Dimensional Delta-Function Potential
|. Richard Lapidus

Citation: American Journal of Physics 37, 930 (1969); doi: 10.1119/1.1975948

View online: http://dx.doi.org/10.1119/1.1975948

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/37/9?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Scattering from an attractive delta-function potential
Am. J. Phys. 56, 278 (1988); 10.1119/1.15667

On phase shift analysis of one-dimensional scattering
Am. J. Phys. 44, 778 (1976); 10.1119/1.10312

A new expansion method in the Feynman path integral formalism: Application to a one-dimensional delta-
function potential
J. Math. Phys. 14, 554 (1973); 10.1063/1.1666355

Born Series for Scattering by a One-Dimensional Delta-Function Potential
Am. J. Phys. 37, 1064 (1969); 10.1119/1.1975196

Thermodynamics of a One-Dimensional System of Bosons with Repulsive Delta-Function Interaction
J. Math. Phys. 10, 1115 (1969); 10.1063/1.1664947

Explore the AAPT Career Center -
access hundreds of physics education and

other STEM teaching jobs at two-year and
four-year colleges and universities.

%:HEI
http://jobs.aapt.org mﬁ



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://jobs.aapt.org/
http://scitation.aip.org/search?value1=I.+Richard+Lapidus&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.1975948
http://scitation.aip.org/content/aapt/journal/ajp/37/9?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/56/3/10.1119/1.15667?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/44/8/10.1119/1.10312?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/14/5/10.1063/1.1666355?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/14/5/10.1063/1.1666355?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/37/10/10.1119/1.1975196?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/10/7/10.1063/1.1664947?ver=pdfcov

030

transition with a photomultiplier, he finds that a photon
arrives at a particular place at a particular time. If the
observer is a distance r from the emitting atom, he at-
tributes his result to an instantaneous transition at a time
r/c earlier than his detection of the photon. On the other
hand, an observer may examine the emitted radiation from
many atoms with an interferometer. In this case he infers
that each excited atom continually emits a wave packet in
all directions for a period of time on the order of the mean
life of the excited state. This interferometer experiment is
discussed below. It is familiar and straightforward, but the
result is usually presented with different emphasis than that
given here.

From the photon, or particle, point of view, the process
of decay is instantaneous, and the mean life refers to the
number of atoms which decay per unit time. From the
wave packet point of view, however, the mean life is indeed
a measure of the time over which the process of emission
occurs.

The particle and wave duality for the emitted radiation
corresponds to a duality in the way the emitting atom is
described. A perturbation-theory treatment leads to a
wavefunction for the excited atom which is continually
changing with time, although we say that the atom can
never be found in between states.

The experimental verification of the wave packet ap-
proach is obtained as follows: Let a beam of light produced
by optical transitions of a particular kind be used as the
light source for a Michelson interferometer. Doppler
shifts due to the motion of the emitting atoms will be
neglected so that each transition is essentially identical
to every other. It will be assumed that the wave packets
from different atoms are also essentially identical. These
assumptions may be justified by the fact that the condition
to be found for distinct fringes may be approached in
practice. We further assume that the light from different
atoms is not phase-coherent.

The situation may be analyzed in the usual way.?
The fixed and the movable mirrors of the interferometer
form two virtual images, L and L, of the light source
separated by a distance S (Fig. 1). Light from the far

Frae. 1. The virtual images in the Michelson interferometer.

image, Ls, travels a distance 8 cosf further than light from
L, before reaching the eye. Circular fringes are produced
with maxima satisfying the equation

mi =8 cosf.

Since the wave packets from different atoms are not
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phase-coherent, the fringes described above must be made
up of contributions, due to the interference of each wave
packet with itself. The beam splitter in the interferometer
therefore divides each wave packet into two parts, one of
which appears to come from L, the other of which appears
to come from L,. In order for a particular wave packet to
contribute to the interference pattern, the part which
comes from L must reach the eye at the same time as the
part which comes from L,. Since the part which comes from
Ly has traveled a distance S cosf further, it must have
originated in the atom at a time S cos6/c earlier. Thus the
light source must be continually emitting a wave packet
for a time S cosg/c in order for that packet to contribute
to the fringes. It is found from experiment® that distinct
fringes may be produced until S cosf/c approaches the
mean life 7 of the emitting state. We may therefore write
an approximate condition for distinet fringes as > cosf/c.

This result is well known. For a fuller discussion in which
the same result is also presented in a different way,
see Ref. 3.

1 See, for example, D. Bohm, Quantum Theory (Prentice~Hall, Inc.,
Englewocod Cliffs, N. J., 1951), p. 412.

2 See, for example, F. A, Jenkins and H. E. White, Fundamentals of
Optics (MeGraw-Hill Book Co., New York, 1957), 3rd ed., pp. 244-253.

3 M. Born and E, Wolf, Principles of Optics (Pergamon Press, Inc.,
New York, 1959}, pp. 315-322.
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Several years ago, Eberly! showed that one-dimensional
scattering problems can be solved in terms of phase shifts,
and that the formalism is remarkably similar to the three-
dimensional case. The results, of course, agree with those
obtained by the conventional method of solving such
problems.

The application of the partial-wave analysis to the
problem of scattering from a one-dimensional delta-
function potential is of particular interest from a pedagogic
point of view because the determination of the phase
shifts is quite straightforward in contrast to problems in-
volving more complicated boundary conditions.

We consider first the “standard solution.” For the
potential given by V (z) =As(x), the Schrédinger equa-
tion is

— (h2/2m) (@ /da®) + A (x)d = Ey. (1)

If the incident wave approaches from the left, the
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solutions to the left and right of the origin are, respectively,
¥_=exp (tha) +r exp( —ikz), (2)
¥y =t exp(ikz). (3)

From the boundary conditions at the origin

¥-.(0) =¢,.(0), (4)
¥-"(0) =y (0) = (2mA /A2y (0), )
we have
1+4r=¢, (6)
th(1—r—t) =2af, (7)

where o =md /R
We then obtain the reflection and transmission coeffi-
clents
R=|r["=a¥(a?+k?), (8)

T=|t =k (a*+k*). 9

Now following Eberly we write
v =exp (tkz) +f exp (thex), (10)
where f is the “scattering amplitude” and e= 41 to the

right and left of the origin. In terms of “phase shifts”

1
Je=1 2 e exp(id;) sindy,
=0

(11)

where §; is the phase shift of the Ith partial wave.
The solutions to the right and left of the origin are then

¥+ =exp(ikz) +7 exp (ikz), (12)
¢ =exp (tkz) +f- exp(—ikz). (13)
Using Eqgs. (4) and (5) we obtain
fe=f-=i/(k—ia). (14)
From Egs. (11), (14) we have
8, =0, (15)
tand, =a/k. (16)

The total cross section for scattering may be obtained
from the form

1
Tot =2 Z $in28; =202/ (a®+-k?),

(7
1=0
or by using the “optical theorem”
a = —2 Refy, (18)

which again yields Eq. (17).
It is of interest to note the relation between the total
cross section for scattering and the reflection and trans-

mission coefficients. Since

Otot = Z ‘félz:lf+|2+1f°[2}

i=+1

(19

by comparing Eqs. (2), (3), (12) and (13) we obtain

Gro=|t—1 4|7 [2=2|r [2=2R, (20)

where we have used Eq. (6). This result is indeed con-
firmed by a comparison of Eqgs. (8), (9), and (17).

From the point of view of partial waves, we note that
for the problem of scattering from a one-dimensional delta-
function potential there is only “s-wave” scattering. The
delta function is, of course, the limiting case of the square-
well potential discussed by Eberly. When «—0, 6,—0, and
there is no scattering. When k—0, 8—=/2, and there is no
transmission.

tJ. H, Eberly, Amer. J. Phys. 33, 771 (1965).
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In doing lattice vibration problems, an important
consideration is the stability of the model under considera-~
tion.

Dugdale and MacDonald! state that a linear chain is
stable and contradict suggestions made by Peierls? and
Domb? that a linear chain is inherently unstable due to
thermal vibrations.

I wish to present an example where the mean square
amplitude of vibration of an atom is proportional to m,
where m means the mth atom, counting from one end of the
chain. T assume harmonic and anharmonic forces between
nearest;neighbors only.

! 2 N-1 N
Total potential energy of chain is
4 N-1
U= Z Z Vi {Um 1= Um)7,
i=2m=0

where wu,=0. Classical statistics shows that the average



