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The problem of a particle in a one-dimensional infinite square-well potential with one
wall moving at constant velocity is treated by means of a complete set of functions which
‘are exact solutions of the time-dependent Schrodinger equation. Comparison is made with
a first-order perturbation treatment, and numerical results are presented for a particle initially

in the ground state.

INTRODUCTION

Because of its simplicity, the problem of a
particle in a one-dimensional infinite square-well
potential with stationary walls is usually one of
the first examples discussed in a beginuning course
in quantum mechanics. The slightly more com-
plicated situation where one of the walls is
allowed to move provides an instructive example
of a problem with a time-dependent potential.

If the velocity of the moving wall is low, the
problem can be handled by standard first-order
time-dependent perturbation theory. In addition,
however, if the velocity of the moving wall is
constant, there exists a set of exact solutions
which form a convenient basis for discussing the
behavior for any value of the wvelocity of the
moving wall.

I. PERTURBATION TREATMENT

The potential energy funetion is zero if 0<z <
L(t) and infinite otherwise. The Hamiltonian

operator is then
5C=— (72/2m) (8*/8x?), 0<z<ZL().. (1)

The instantaneous energy eigenfunctions can be
used as a basis for expanding the wave function,’

Yz, ) = 2 ba(t)un(2, t)

X exp [— (i/h) /Ot En(f)dr] (@

where
un (2, £) = (2/L)V? sin[ nax/L(t) ], (3)
and
B, (t) =2xn2/2mI2. (4)

1 1., 1. Schiff, Quantum Mechanics (McGraw-Hill Book
Co., New York, 1968), 3rd ed., Chap. 8.

Substitution of Xq. (2) into the Schrodinger
equation,

ey =1hi(dy/ot), (5)

multiplication by u; (%, £), and integration over the
interval (0, L) yields the equations

L
dbe/di=— S b, / () 00) de

n 0

X exp <(i/ﬁ) fo t (Ek—En)dT). 6)

For the special case

(dL/dt) =const, (7)
Eq. (6) becomes
dby/de= 30 b, [ (—1)¥/E][2nk/ (n*—k?) ]
Xexp[ —i(n?—k*) 72 (1—1/¢) /4a], (8)
where
EQ)=L(t)/Lo,  Le=L(0), - (9
and
a= (m/2h) Lo(dL/dt). (10)

Negative values of « correspond to a contracting
box and positive values to an expanding box.

So far the treatment is exact. The coupled
Eqgs. (8) are equivalent to the time-dependent
Schrédinger Eq. (5). The first-order approxima-
tion consists of replacing the b,(t) on the right
side of Eq. (8) by their values at t=0. The indi-
cated integration can then be carried out. Numer-
ical results are presented in Fig. 1 for | b; |? as a
function of L/Ly for three different wall velocities
for the case

b1 (0)=1

b,(0) =0, n##l, (11)
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F1a. 1. Comparison of first order perturbation results
with an exact caleulation for three different compression
rates. | by |2 is the probability that a particle initially in
the energy ground state will be found in the first excited
state.

i.e., the particle is initially in the ground state.
The explicit expression for the first-order ap-
proximation to bz(£) when a<0 is

be=—(4/3) cos(g)[Ci(g/&) —Ci(g)]
— (4/3) sin(g)[Si(g/&) —Si(g) ]
—i(4/3) cos(g)[Si(g/) —8i(g)]
+1i(4/3) sin(9)[Ci(g/£) —Ci(g) ],

where Si(z) and Ci(z) are the sine and cosine
integrals, respectively,

(12)

* sint

Si@):[ ST
0 T

Ci(z) = — /w "—OTS-T dr, (13)

x

and

g=—37%/4a. (14)

Also shown in Fig. 1 are the results of an exact
caleulation described below.

II. EXACT TREATMENT
Substitution of
¢u(, t) = (2/L)"
Xexpliak(z/L)*—i*n*(1—1/£) [4a]
Xsin[nrz/L(t)] . (15)

into the time dependent Schrédinger Eq. (5) will
verify that it is a solution if (dL/dt) =const,

MOVING WALL

Ib,I*

0 0.2 0.4 06 08 1.0
L/ Lo '

Fie. 2. Probabilities as a function of L/L, that the
particle will be found in various energy states.

where £ and « are defined by Egs. (9) and (10).
These functions vanish at =0 and z=L(t) as
required, remain normalized as the wall at 2 =L (¢)
moves, and form a complete orthogonal set.
These functions form a convenient basis because
when a wave function is expanded in terms of
them,

Y, t) = 2 aupn(a, 1), (16)

the expansion coefficients a, remain constant as
the wall moves, their values being determined by
the wave function at t=0 in the usual manner,

Lo

an= ¢.* (z, 0)¢Y (2, 0)dzx.

(17)

0

If the particle happened to be in one of the
¢-states at =0, it would remain in that state as
the wall moved.

Numerical results are presented in Figs. 2-5
for a particle which is initially in the energy
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Fi1a. 3. Probabilities as a function of L/L, that the particle
will be found in various energy states.
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F1c. 4. Probabilities as a function of L/L that the particle
will be found in various energy states.

ground state. In this case, Eq. (17) becomes

o= (2/Lo) / ¥ oxp[—da(z/La)?] sin (a2/Lo)

Xsin(nrz/Lo)dz.  (18)
Unfortunately, the above integral is not ele-
mentary, and the best that can' be done for
numerical evaluation is to reduce it to a combina-
tion of terms involving the Fresnel integrals

Ci(z) = (2/7)10 / cosrdr
0
and

Su(z) = (2/7)1° / " sinrdr. (19)
0

In order to find the probabilities that the particle
will be found in the various energy eigenstates
at a later time, one must re-expand the wave
function in terms of the instantaneous energy
eigenfunctions u; (z, £),

V@) = X ada(n, ) = X CeDun(z, 1),  (20)

the u(z, ¢) being defined by Eq. (3). The coeffi-
cients Ci (1) are related to the previous coefficients
b (t) by

Cu(t) =bu(t) exp <——(i/ﬁ) / E,C(T)d7>, (21)

and

L C(D) P=10:(2) I (22)

AND M. H. RICE

Because of the orthogonality of the u:(z, t) one
finds that

L{t)
)= T a / w(z, D on (2, ) dz.  (23)

Again, the integral can be expressed as a combina-
tion of Fresnel integrals, and the arithmetic was
done on the IBM 360-30 digital computer at the
University’s Computing Center. Figures 2—4 show
the results for the squares of the energy-eigen-
function expansion coefficients versus L/Lo for
three different values of the velocity parameter «.
For the values of a shown, it was found that ten
terms in the series Eq. (23) were sufficient to give
four to five place accuracy for the squares of the
coefficients.

The expectation value of the energy of the
particle was obtained from

E@))= X[ Cu(®) PE®). (24)
k

Figure 5 shows the ratio of the expectation value

of the energy to the energy the particle would

have if it remained in the ground state.

III. DISCUSSION
The velocity parameter « can be written as
a=%nr Ly (dL/dt), (25)

where
T0= 2Lo/ Vo

is the period of oscillation of a classical particle
with the ground state energy. Examination of
Figs. 2-4 shows that if | «| is small, ie., the
fractional change of the well width in one classical
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Fie. 5. Ratio of the average energy of the particle to
the instantaneous ground state energy as a function of
L /Lo for three different compression rates.
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period is small, then the particle will tend to
remain in the initial state, a not unexpected
result. As the velocity of the moving wall increases,
larger amounts of other energy states are mixed in.

Examination of Fig. 1 shows that first order
perturbation theory provides a useful approxima-
tion to | b, |2 for | & | as large as 2, a rather sur-
prising result, since a=—2 corresponds to a
rather rapid compression. For higher values, of
course, the deviation between the perturbation
result and the exaect calculation becomes ap-
preciable.
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Figure 5 shows the ratio of the average energy
of the particle to the instantaneous ground state
energy. One sees that for large compression rates
there is a considerable increase in energy over and
above the (1/L?) increase which would be ob-
tained in a quasistatic compression. To this
extent, one Schrodinger particle in a box exhibits
a behavior similar to that of a real substance
when compressed at a finite rate. Such a process
is known to be irreversible, the most notable
example being that of a shock-wave compression
which can lead to a large increase in entropy.
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The Reflection and Transmission of Eléctromagnetic Waves by
a Moving Dielectric Slab. I. Solution in the Moving Frame

Witriam J. Nosre anp CarL K, Ross
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The Darwin scattering method is used to calculate the amplitudes, frequencies and propa-
gation directions of the free space electromagnetic waves reflected and transmitted by a
plane-parallel, non-dissipative, isotropic, homogeneous, dielectric slab. The laws of reflection
and refraction and the conservation of energy flux follow naturally. Explicit formulas
are given for perpendicular polarization but the method is equally applicable to polarization
parallel to the plane of incidence. The results of Part I for the reference frame of the moving
slab are in a form to be transformed in Part II to the reference frame of a “fixed” observer.

The discussion of the reflection of electromag- .

netic waves by a moving mirror provides one of
the classic applications! of the special theory of
relativity. Actually, an essentially correct treat-
ment? preceded Einstein’s 1905 analysis.® Quite
recently, there have appeared studies of such
problems as the reflection and transmission by a
moving interface and a moving plasma slab,* and
the diffraction of electromagnetic waves by
moving cylinders® and wedges.® The method of
analysis usually proceeds in two steps. One first

1T A. Sommerfeld, Optics (Academic Press, Inc., New
York, 1954), p. 72.

2 W. Pauli, Theory of Relativity (Pergamon Press, Inc.,
New York, 1958), p. 95.

3 A. Einstein, Ann. Physik 17, 891 (1905).

¢C. Yeh, J. Appl. Phys. 86, 3513 (1965); 37, 3079
(1966).

8. W. Lee and R. Mittra, Can. J. Phys. 45, 2999
(1967).

§ G. N. Tsandoulas, Radio Sci. 8, 887 (1968).

obtains a solution when the body under considera-
tion is at rest, and then transforms this solution,
through the use of standard relativistic transfor-
mations, into a reference frame in which the body
is in uniform motion.

In the case of the plane-parallel, nondissipative,
homogeneous, isotropie, dielectric slab considered
here, the first step is accomplished through the
use of the Darwin seattering method, a method
which will be shown to lead directly to all the
important results associated with the reflection
and transmission of electromagnetic waves by the
slab. In Part IT, these results will be transformed
g0 as to obtain a solution for a fixed observer.
The transformed solution will be seen to lead
to the usual angle and frequency relations as-
sociated with a moving mirror, but it will also be
shown that energy conservation can no longer be
expressed in the same form as in the static case. In
order to obtain a valid expression for energy



