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One-Dimensional Hydrogen Atom
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(Received 23 July 1968; revision received 8 April 1969)

The time-independent Schrédinger equation is solved for the bound state solutions of the
one-dimensional Coulomb potential, —e?/| z |. The wave functions obtained are normaliz-
able and continuous, The energy spectrum consists of a set of discrete levels with energies
equal to the Bohr energies of hydrogen, and a set of continuum levels with energies lying
strictly between the diserete levels. The odd wave functions associated with the discrete
levels are differentiable everywhere, but the even wave functions associated with the con-
tinuum levels have a cusp with infinite slope at the origin. The energy levels are not degen~
erate. Following the method of Loudon, the bound state solutions of a truncated Coulomb
potential —e2/ (| z |+a), a>0, are also obtained. For small g, the discrete spectrum of this
potential contains: (1) energy levels which approach arbitrarily close to the discrete levels
of the true Coulomb potential as a—0, with odd wave functions identical to the odd wave
functions of the true Coulomb potential at a=0; (2) energy levels which approach arbitrarily
close to the discrete levels of the true Coulomb potential as a—0, with even wave functions
which are net the even wave functions of the true Coulomb potential at ¢=0; and (3) a
ground state level belonging to an even wave function with an arbitrarily large binding
energy as a—0, The ground state energy is quite sensitive to the actual value of a chosen.
It is concluded that the solution to the one-dimensional hydrogen atom shows a critical
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dependence on the detailed behavior of the Coulomb potential at small distances.

INTRODUCTION

We solve the time-independent Schrodinger
equation (SE) for the bound state energies of the
one-dimensional “hydrogen atom’ with Coulomb
potential energy

Viz)=—e/lz]. (n

Such a potential comes to mind rather naturally
when one tries to think of a one-dimensional
problem (other than the simple harmonic oseil-
lator) which is a suitable exercise in solving the
SE in series. It turns out, however, that a com-
plete discussion and interpretation of the solutions
of the SE for the Coulomb potential in one dimen-
sion is in some respects more difficult than for the
three-dimensional hydrogen atom.

The same problem has been considered by
Loudon.! In particular, he finds that the energy

* Work supported in part by the National Science
Foundation Undergraduate Research Participation Pro-
gram.

! R. Loudon, Amer. J. Phys. 27, 649 (1959). For a
comment on Loudon’s paper see M. Andrews, Amer, J.
Phys. 34, 1194 (1966). The two-dimensional hydrogen
atom has been discussed by B. Zaslow and M, E. Zandler,
Amer. J. Phys. 35, 1118 (1967).

spectrum is degenerate, and this idea seems to have
gained some currency.? However, we find that the
energy spectrum of the one-dimensional hydrogen
atom is not degenerate (although it does have
certain interesting and unusual features). The
arguments leading to this conclusion are presented
in the following sections.

Insofar as possible, we use Loudon’s notation
and solutions! in order to facilitate comparison of
our results with his. In Sec. I we quote Loudon’s
solutions to the SE for the potential [Eq. (1)].
The boundary conditions are imposed in Sec. II,
determining the energy spectrum and the aec-
ceptable wave functions. In Sec. III we give
Loudon’s solution for the related problem of the
truncated Coulomb potential

Vz)=—¢/(z|+a); a>0, (2)
with explicit formulas for the energy levels for
small a. This enables us to interpret the spectrum
and solutions of the true Coulomb potential
(a==0) in Sec. IV. In Sec. V we suggest a one-
dimensional potential which is a suitable exercise
for solving the SE in series.

% Book review by G. Sposito, Phys. Today 21, 81 (1968).
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I. SOLUTIONS OF THE
SCHRODINGER EQUATION

The time-independent Schrodinger equation in
one dimension for a particle of mass m with
Coulomb potential energy given by

Vz)=—e/|z]| (3)

4)

We wish to find the negative energy solutions of
this equation.

Following Loudon,! we introduce dimensionless
variables @ and z for energy and length by writing

is
— (#2/2m) (d*¥ /dx®) — (¢®/| x |) ¥ =BV,

E=—1/ (2masta?) (5)
and
x =21aagp, (6)
where qp is the Bohr radius:
ap=h*/met. 7
Then the SE becomes
AV /d2—3V+ (of| 2 )T =0. (8)

For z2>0 this equation has two linearly inde-
pendent solutions, one diverging as e*%, and the
other converging as e=*? as z—> . Only the latter
solution leads to a normalizable wave function.
This solution (which we eall ¥} is

¥V, (2) =B, W.(2) 9

where B, is an arbitrary constant and W, is
given by 4>

(1—a),

e—-le 1 «©
Wale) = 32 <— MR TR A
F[Inz+y¢(1—a) —¢ (1) —y¢(2)]
e (1—a), .
* 2 r!<r+1>z”>' (10)

3 Erdélyi, Magnus, Oberhettinger, and Tricomi, Higher
Transcendental Functions (McGraw-Hill Book Co., New
York, 1953), Vol. I, p. 261.

4 Handbook of Mathematical Funciions, Nat'l. Bur. Std.,
Appl. Math. Ser. 55 (U. 8. Gov’t. Printing Office, Wash-
ington, D.C., 1966), p. 504.

5 In order to obtain Eq. (10) from Ref. 3 or 4, it is
useful (for 2>0) to transform KEq. (8) by writing
¥ =¢ 2%y, Then KEg. (8) becomes 2w’ —zw' 4aw=0
which is Kummer's equation [Ref. 4, Eq. (13.1.1)]
with 5=0 and a=—a. The solution which is well-
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In Eqg. (10), 4, is given by

A= T [lnF1=a)== (1) (n2) 1],
(11)
and (1—a), stands for
(l1—a),=(1—a)(2—a) -+ (r—a) (12)

with (1—a)e¢=1. The function ¢ (s) is the loga-
rithmic derivative of the gamma function I'(s),

¥(s) =T'(s)/T(s), (13)

and like the gamma function it has simple
poles at =0, —1, —2, ---

For z<0, the normalizable solution of Eq. (8),
which we call ¥_, and which converges as ¢*?
as #—— o igf

V_(2) =B_Wa(—2),

where B_ is an arbitrary constant and W,.(—z)
can be evaluated from Eq. (10).

The solution for W, quoted in Eq. (10) is very
elegant and compact, and it is the most convenient
form of the solution to Eq. (8) for discussing the
energy spectrum and wave functions of the one-
dimensional hydrogen atom. In Appendices A and
B we indicate how the solutions to Eq. (8) can be
obtained by the more familiar approach of solving
this equation by power series, using the method of
Frobenius.

(14)

II. ENERGY SPECTRUM AND
WAVE FUNCTIONS

In the previous section we quoted the solution
to the Schrodinger equation for the one-dimen-
sional Coulomb potential which was normalizable
as |z |—>w. We now require that ¥(z) be con-
tinuous at z=0. Because the potential is singular
at the origin, no such requirement is imposed on
¥’ there, and indeed it would be incorrect to do so.

behaved as z—w is U(—e, 0, z) [Ref. 4, Eq. (13.1.8)].
By using U(—«,0,2)=2U(1—a,2,2) [Ref. 4, Eq.
(13.1.29) 7], the solution of Eq. (10) quoted in the text
of the paper can be obtained by algebraic rearrangement
of the explicit form for U(1—a, 2,2) given in Ref. 4,
Eq. (13.1.6). Formulas (6.3.5) and (6.3.6) of Ref. 4 for
¥ (8) are useful in making this rearrangement.

8 This result is most easily obtained from Eq. (8) for
250 by making the change of variable z——z.



ONE-DIMENSIONAL HYDROGEN ATOM

Boundary conditions on ¥’ at z=0, if needed,
will be derived from the Schradinger equation.”

Continuity of ¥ at z2=0 requires, from Egs.
(93, (i0), and (14}, that

—(Ya)[B4/T(~a)]=—(1/a)[B-/T(—a) .
(1)

Assuming 320 (a=0 would correspond to infinite
binding energy), Eq. (15) has the solution

B+=B_,EB, (16)

provided that o is not equal to a positive integer, N.
[In the latter case, where a=N, Eq. (15) is
identically satisfied since 1/T'(~N)=0.] The
wave functions so obtained have a continuous
energy spectrum

= —7i2/ (2magdo?), (17

with all positive values of « allowed ezcept
a=1, 2, ++-. We label these (continuum) wave
functions by the two integers between which the
aceeptable values of « lie. Thus for

N—-1<a<N; N=1,2, -, (18)
the wave functions are
‘I’N-z,N(Z) =BNw1,NWa(1 2 D {19)

They are even functions of 2.

We note that these continuum wave functions
are continuous and differentiable everywhere
except at the origin where they are continuous but
not differentiable. In fact, the slope of ¥y_;,x is
infinite at the origin, since, using Eq. (10}, we
have

Uy1,5(2)—=[Byaw/T(—a)]
X[—({1/a)+]2z[In|z[+0(2)];

| 2 |-0.
(20)

7 No boundary condition (BC) is imposed on the
derivative of ¥. This is because the BC (if any) on ¥’
should always be derived from the SE. For 2 potential
which is finite everywhere, it follows {from the SE that
¥ is finite so that ¥’ is continuous. For a singular po-
tential, the nature of the BC (if any) on ¥’ depends on
the details of the singularity of the potential and is always
derived from the SE for the particular potential in question.
Examples are the infinite square well (no BC on ¥/, but
¥ =0}, and the s-function potential (the SE determines
the discontinuity in ¥').
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Yo % [al (-a)/Bq/]

Fre. 1. The first continuum wave function Wg corre-
sponding to any energy with a<1. The shape of the
function ¥y, follows from Appendix B.

Therefore,
Vyan(@)—[By_1x/T(—a)]sgn(z) Inlz|;

{ z ]'_)O: (21}

[where sgn(z) is the sign of 2z, or, assuming
By_1.4>0,

Uy n(0k)=F oo, (22)

In spite of the singular slope at z=0, ¥y v is
normalizable and B is determined by the normali-
zation. The first two continuum wave funetions
are shown in Figs. 1 and 2.

We now consider ¥ when « is a positive integer
N. Following Loudon,! when =N all terms in
Eq. (10) are finite except for T'(—a) and
¥ (1 —a), both of which have simple poles. Because
1/T(—N) =0, only the term in Eq. {10) involving
¥ (1—~a) contributes, and we find

(1 —~N ) r

Y — 15 1‘0(1—_&)] —2/2 v Al _ 71
Wnr(\z)—iﬁ[r(_m e EO:T!(H-DEz .

(23)

Sinee ¥ (1—a) and I'(—a) both have simple poles
at a=N, the limit in Eq. (23) is finite [actually'?
it is equal to (—1)¥+N!]. Furthermore, (1—N},
is zero for r >N and the series in Eq. (23) ter-
ninates. Thus®
N-1 I
, (1—-N),
w = (—1)NHNgz2 SY AT
w(z)=(=1) ¥ EO: ri(r-+1)!
Continuity of ¥ as given in Egs. (9) and (14)
at 2=0 for a=N is already assured by Eq. (15).
Nevertheless, we can check this directly from

grtl, (24)

8 Reference 4, Egs. (6.3.7) and (6.1.17).
¥ The Wy(z) are related to the associated Laguerre
polynomials Ziy. See Ref. 1.




1148

Vo X [al"(—a)/B|2]

N
e/

Fia. 2. The second continuum wave function ¥z cor-
responding to any energy with 1 <a< 2,

Eq. (24). Writing
¥, (2) =B Wx(2);

we see that

Y_(2) =B_Wn(—2), (25)

¥, (0) =¥_(0) =O0. (26)

Thus continuity of ¥ at 2=0 does not give a
relation between B, and B_. We must, however,
find such a relation since only one of these con-
stants can be determined by normalization.
To do so we derive a subsidiary boundary condi-
tion directly from the SE for the case a=N; we
integrate the SE across an infinitesimal region
about the origin to find a condition on the deriva-
tive of ¥ at z=0. (This procedure is identical to

that used to find the boundary condition on ¥’
for a one-dimensional delta function potential.)
From Eq. (24) we see that (if a=N)

V:(2)—00(2), (| 2[—0). (27)
Using this in Eq. (8), integrating from —e to e,

and taking the limit e—0, we find that the
derivative of ¥ is continuous at the origin if a=N:
', (0) =¥ (0). (28)
From Egs. (24) and (25) we have immediately
that
¥4 (0) === (—1)""'NIB,, (29)
so that

B.=—B_=B. (30)

Thus for a=N the wave functions corresponding
to the discrete energy levels

Ey=—met/(20N?); N=1,2,++ (31)

are

Yy (2) =By sgn(z) Wx(l2]) (32)

L. K. HAINES AND D. I, ROBERTS

where we have labeled these (discrete) wave
functions by the energy quantum number N,
and where Wy is given by Eq. (24). The constant
By can be determined by normalization. The
discrete wave functions are odd functions of 2
and are continuous and differentiable everywhere.
The first three discrete wave functions are shown
in Fig. 3.

The energy spectrum for the one-dimensional
hydrogen atom is shown in Fig. 4. The energy
levels are not degenerate. Furthermore, there are
both odd (discrete energy) and even (continuous
energy) wave functions.

III. TRUNCATED COULOMB POTENTIAL

The solution to the SE for the bound states of
the one-dimensional Coulomb potential found in
the previous sections includes wave functions
belonging to a continuous energy spectrum and
having infinite slope at the origin. Neither of
these properties is a normal feature of sohitions
of quantum mechanical bound state problems.
However, the Coulomb potential is singular at the
origin; this is clearly why the one-dimensional
Coulomb problem has bound state solutions with
such unusual properties.

k]

Yo

_l/lll } 1 1 z

Fi1g. 3. The first three discrete wave functions (un-
normalized) of the one-dimensional hydrogen atom.
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It is therefore of considerable inferest to study a
related problem where the potential is finite
everywhere. We will consider the truncated
Coulomb potential where the potential energy is
given by

Viz)

—&/(| = |+a); (33)

and is shown in Fig. 5. Following essentially the
discussion given by Loudon,! we observe that the
SE for this pofential is still of the form Eq. (8),
provided the independent variable is chosen as 2z,
where

a>0,

zo=2(at2)/an, (34)

with the plus-or-minus sign chosen according as z
is positive or negative. Then the SE becomes

W10+ (af2.) T =0. (35)

The normalizable solutions of Eq. (35) with the
correct behavior as | z |—« are

V(24) =B Wa(2y). (36)

For a0, the appropriate boundary conditions for
the wave functions at =0 are continuity of ¥ and
continuity of ¥’ since for as£0, the truncated
Coulomb potential is never infinite.” These condi-

E

j NN
v

|

Fig. 4. The energy spectrum of the one-dimensional
hydrogen atom. The energies are given by E=—h¥
(2ma¢’e?)., The odd wave functions ¥x have discrete
energies given by a=N (N=1,2, ---). The even wave
funetions ¥y_;y have a continuous spectrum with
energles corresponding to « anywhere within the range
N—-1<a<N(HN=1,2, ¢«--). The energies are not de-
generate.

Yo

Yo

X
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V{x)

—

——

T -ea

Fre. 5. The truncated Coulomb potential of Eq. (33).

tions require

(By—BIYWL(?") =0 (87a)
(By+B_)dW.(2") /dz’' =0, (37b)

where 2/ is the (common) value of 2. at 2 =0:
(38)

If B.=B_ the truncated Coulomb potential has
even wave functions with energies corresponding
t0 o determined (as a function of the truncation
distance a) by

AW (2" /de’ =0. (39)

Correspondingly, if B.=—B_, the truncated
Coulomb potential has odd wave functions with
energies determined by

Wa(2") =0. (40)

In the case where the truncation distance a
becomes small compared with the Bohr radius ae
(and provided that o is not also small compared
with one), we have 2/<<1 and Eqgs. (39) and (40)
can be solved explicitly for « by using Eq. (10).
Equation (40} becomes

2’ =20/ aay.

(2a/a0a) ¢ (1—a) —1/a=0, (41)
and Eq. (39) becomes
In(2a/ma) +¢(1—a) =0, (42)

as found by Loudon.! For small a/a, these equa-
tions have a solution only for « near a positive
integer N. Since!'

Y{1—a)—1/(a—N);
18 Reference 4, Eq. {6.3.6).

(43)

a—N,
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Eq. (41) becomes

a=N+2a/a (44)
and Eq. (42) becomes
a=N+1/In(ac/a), (45)

so that the energies are
72 1—4a/Nay;

Ey=— ——
il 2ma®N?

odd states
1—2/N In(ay/a); even states
(a/ael). (46)

The odd state energy levels of the truncated
Coulomb potential lie slightly above the diserete
energies of the true Coulomb potential; the even
state energy levels of the truncated potential in
turn lie slightly above the odd energy levels
of the truncated potential. (The last statement
follows sinee s>2 lns for large s.)

Equation (46) gives all energy levels of the
truncated Coulomb potential for small a/ao
with the exception of those for which « is also
small. If both a/as and a are small, 2’ is not
necessarily small, and the procedure of using the
lowest order terms in Eq. (10) to obtain equations
like Eqgs. (41) and (42) is open to question.
However, if « is small (a<1, say) we may use the
explicit representation of ¥ (namely ¥y) found
in Eq. (B9). We showed in Appendix B that
Wa(l2z|) is never zero (see also Fig. 1), and it
follows immediately that Eq. (40) can never be
satisfied for a<1. Thus we have only an even
wave function (and only one, obtained by
matching at the two e's in Fig. 1) with energy
determined by Eq. (39).

We assume that « for this state, while small, is
still much larger than a/ao; i.e.,

a1, a1, but such that 2/'<<1. (47)

Then we can keep the lowest order terms in 2’
in Eq. (10) to evaluate Eq. (39} and we find

1/20+41n(2a/a0x) =0, (48)

as given by Loudon.! For small &, 1/a>>In(1/a),
so that Eq. (48) can be written

a=1/[21In(as/a) ]
For o as given in Eq. (49) it is easy to see that

(49)

L. K. HAINES AND D. H. ROBERTS

2’1 so that the assumptions of Eq. (47) are
satisfied. Therefore, we have found the only
energy eigenstate when « is small (for small
a/ay). This is the ground state of the truncated
Coulomb potential; it has an even wave function
with energy

E=—(#/2ma?)[2In(as/a) T (a/aek1). (50)

I1V. CONCLUSIONS
A, Comparison of Solutions

Having obtained the complete solution for the
one-dimensional hydrogen atom for both the true
and truncated Coulomb potentials, we wish to
discuss to what extent the solutions for the
truncated Coulomb potential approach those for
the true Coulomb potential as the truncation dis-
tance a goes to zero.

We consider first the odd wave functions of the
truncated potential with energies given by Eqg.
(46). As a/a, becomes arbitrarily small, the
energies approach arbitrarily close to the discrete
energies of the odd wave functions of the true
Coulomb potential. At =0, it follows from
Eqgs. (36) and (44) that the odd wave functions
of the truncated Coulomb potential are identical
to the odd wave functions of the true Coulomb
potential. Thus, the odd solutions of the true
Coulomb potential can be obtained as the limit
of the odd solutions of the truncated potential as
a—0. This is to be expected since both solutions
satisfy boundary conditions requiring continuity
of ¥ and of ¥'.

Next we consider the even wave functions of the
truncated potential with energies given by Eq.
(46). As a/as becomes arbitrarily small, the
energies approach arbitrarily close to the discrete
energies of the odd wave functions of the true
Coulomb potential. At ¢=0, however, the even
wave functions of the truncated potential are not
the even wave functions of the true Coulomb
potential. This is neither serious nor surprising;
it simply means that the even wave functions of
the true potential cannot be obtained from those
of the truncated potential by the limiting process
a—0. Indeed this is to be expected since the even
wave funetions for the true Coulomb potential
do not have a continuous derivative at the origin,
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and one would not expect them to be derivable
from the even wave functions of the truncated
Coulomb potential which must have a continuous
derivative at z=0. It is easy to see how this
behavior arises by considering the SE [Eq. (4)]
for the truncated potential [Eq. (33)7]. Con-
sidering only even wave functions, and integrating
Eq. (4) from —¢ to ¢ across =0, we obtain

— (B/2m)[¥' (+6) —¥'(—¢) ]
U (z)dx

_e[elx,—l—

—E/ Q¥ (z). (51)

For small ¢, it is sufficient to consider the (non-
zero) value of ¥ at =0, and we find

V' (+e) —¥'(—e) =— (4m/B*) ¥ (0)
X[+ In(1+¢/a)].  (52)

For the truncated potential (a>0), the [imit e—0
in Eq. (52) implies that ¥’ is continuous at z=0.
For the true Coulomb potential (a=0), the limit
¢«—0 in Eq. (52) requires that ¥’ have a cusp
with infinite slope at the origin

(04) =¥ (0—) = (=) sgn[¥(0)], (53)

which is preeisely the behavior for ¥ found in
Eq. (22).

B. Physical Interpretation of Solutions

The unusual feature of the solution to the SE
for the one-dimensional Coulomb potential is,
of course, the presence of wave functions with
continuous spectra and infinite slope at the
origin. One might argue that the infinite slope of
the functions is so undesirable that they simply
cannot be considered as acceptable wave func-
tions. If this rather arbitrary point of view is
adopted, the wave functions are easily discarded
by setting By_1x equal to zero. This amounts to
imposing, ad hoe, a boundary condition requiring
continuity of the derivative of ¥ even in the
presence of a singular potential. A great deal of
insight is lost by this approach, as we shall show
below, and we are not in sympathy with it. Even
if one insists on disecarding the continuum solu-
tions, the conclusion is inescapable that the
energy spectrum of the one-dimensional hydrogen
atom 18 not degenerate.

1151

We prefer to keep the continuum solutions to
the SE as acceptable wave functions at least until
we answer the question: What do they mean?
Let us suppose for the sake of discussion that
an object such as the one-dimensional hydrogen
atora! (composed of a “proton” and an‘‘electron’”)
actually existed in nature. Then one would not
expect the potential to be Coulomb at arbitrarily
small distances, but only down to the “proton
radius”, say a fermi or so. However, this is
essentially the problem of the truncated Coulomb
potential which was discussed in Sec. IV. Tt
follows that such a “real” one-dimensional
hydrogen atom has a spectrum with discrete
energy levels of two types: (1) those belonging
to odd wave functions with energies quite close
to the discrete levels of the true Coulomb poten-
tial, and (2) those belonging to even wave func-
tions with discrete energies having no corre-
spondence to the continuum of energies of the
even states of the true Coulomb potential.
The ground state is an example of the latter type
of level, and its energy would be quite sensitive
to the “proton” size, as shown by Eq. (50). In
fact, the binding energy of the “real’’ one-dimen-
sional hydrogen atom would be about 5000 eV!
If “real” one-dimensional hydrogen atoms existed,
one could, in principle, measure this binding
energy experimentally and thus obtain a wvalue
for the truncation distance appropriate to the
problem.

It is certainly clear that keeping only the discrete
levels in the solution of the true Coulomb potential
would not provide a satisfactory description of the
physical problem. For then one would have found
only the levels near the odd levels of a “real”
one-dimensional hydrogen atom. The even half
of the spectrum would be missing, and in particu-
lar one would predict a binding energy of 13.6 eV
rather than one on the order of 5000 eV.

The proper interpretation of the continuum
solutions for the true Coulomb potential is as
follows: They arise because it is not ‘“physical”
to solve the SE in one dimension for the singular

" The term ‘“one-dimensional hydrogen atom” is
slightly ambiguons. We mean a system with potential
proportional to 1/]zl, not a system with potential propor-
tional to the solution of the one-dimensional Poisson
equation for a point charge at the origin, V (z) o |zl
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potential 1/| z |; indeed, they serve as a warning
that the actual diserete spectrum for a “‘real”
one-dimensional hydrogen atom, where the ap-
propriate potential is 1/(| z |+a), will contain
discrete even levels whose location depends on a.
The location of one of the levels, the ground state,
will be quite sensitive to the choice of the trunca-
tion distance a.

In view of the preceding remarks about the
nature of the spectrum of the one-dimensional
hydrogen atom (and in particular the dependence
of the location of the even levels on the behavior
of the Coulomb potential at small distances)
it is really rather remarkable that one can, for the
hydrogen atom in three dimensions, solve the SE
for the singular potential 1/r and find solutions
which are not affected by the detailed behavior of
the potential for small r (especially for zero
angular momentum where there is no centrifugal
barrier term to keep the electron away from the
proton).

To see how this happens we consider zero
angular momentum so that the wave function is

¥(r) = (4m) R (r), (54)
where u, defined by
u(r) =rk(r), (85)
satisfies the SE
~ (#*/2m) (Pu/dr*) — (¢/r)u=Eu, (56)

identical to Eq. (4) for >0, and with identical
solutions. However, in three dimensions the
appropriate boundary condition® at =0 is

2 The boundary condition %(0) =0 is usually obtained
by arguing that the radial wave function R (r) should be
finite at r=0. This argument is not at all convincing;
more persuasive is the following: We certainly want the
transition amplitude 7' for electromagnetic radiation to
be well-defined. For dipole radiation, T is proportional
to the matrix element of the momentum between initial
and final states [J. L. Powell and B. Crasemann, Quanium
Mechanics (Addison-Wesley Publ. Co., Inc., Reading,
Mass., 1965), p. 4227. Thus the integral

must exist at r=0 for all acceptable wave functions.
For either the true or truncated Coulomb potential, this
will only be true if «(0) =0.
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#(0) =0 and this immediately excludes solutions
for » which are “even” in r. Thus the continuum
solutions of the true Coulomb potential and the
even solutions of the truncated Coulomb potential
(which are the ones affected by the behavior of
the potential at small distances) are not accept-
able wave functions in three dimensions.

V. PEDAGOGICAL COMMENT

Solution of the SE for the following one-
dimensional potential

V(2) = —é/x;
=+x; (57)

would be a straightforward exercise for a student
familiar with the solution of the one-dimensional
simple harmonic oscillator by power seties.
Making V infinite at z=0 is equivalent to re-
quiring that ¥ be zero there so that one finds only
the discrete spectrum with well behaved wave
functions (Appendix A). The continuum solutions
(Appendix B) need not be considered since they
are even functions, linearly independent of the odd
discrete functions, and therefore not zero at z=0.
This problem is not completely artificial since
its solution is the zero angular momentum solution
of the three-dimensional hydrogen atom.

x>0
<0

APPENDIX A

Series Solution of Schrédinger Equation for
Discrete Wave Functions

In this appendix we indicate how the solution
[Eq. (24)] for the discrete wave funetions of the
one-dimensional hydrogen atom can be obtained
by the more familiar procedure of solving the SE
in series. We consider Eq. (8) for z>0 and remove
the asymptotic dependence by defining w as

V1. (2) =ePw(2). (A1)
Then Eq. (8) becomes
W'’ —w'+ (af2)w=0, (A2)
which we solve in series by writing
w(g) = % bzrte (A3)
=0

where & and the b, are to be determined. Sub-
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stituting (A3) into (A2) and equating coefi-
cients of like powers of z gives

b05(8—"1) 30;
bry1{r4-8) {r+é+1) +by(@—7—38) =0;
r=0,1, .

(A4)

(A5)

Equation (A4) can be satisfied by choosing 6§=0
or §=1. The choice § =1 gives, from Eq. (A5),

by=bo[ (1 —a),/ri{r+1)1]; r=0,1, -+, (A6)
where by is an arbitrary constant. Thus
e (1—a),
—_ ~2/2 T T el
W, (2) =bye % A1 2, (A7)

It is easy to see that the choice d=0 leads once
again to the solution [Eq. (A7) ] so that only one
of the two linearly independent solutions of the
SE has been found from the series [Eq. (A3).]
In fact, Bq. (A7) is the solution of the SE which
gives rise to the odd wave functions with discrete
energy levels. This may be seen by examining the
convergence of the series in Eq. (A7) for large 2.
By comparing it with the series e* we see that ¥
in Eq. (A7) goes as ¢*? ag z~>« unless the series
terminates. The series terminates {(and ¥, —e™/?
ag z—«) only if a=N where N is a positive
integer. Thus we find

Y, (z) =B, Wx(z) (A8)

where the polynomial Wx(z2) is given by Eq. (24),
and where we have chosen b as

bo= B4 (—1)¥HNL, (A9)

APPENDIX B

Continuum Wave Functions Obtained from
Series Solution of Schrédinger Equation

In this appendix we indicate how the solution
[Eg. (19)7 for the continuum wave functions of
the one-dimensional hydrogen atom can be ob-
tained from the series solution of the SE found in
Appendix A. It is easy to show for any two
solutions ¥® and ¥® of the SE [Eq. (18)]
belonging to the same energy that

(T OFEO _FOFL/Y =, (BL)
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Equation (B.1) is equivalent to the statement
that the Wronskian of ¥® and ¥® ig independent
of z:

Wy (W, ¥@) =0T FOTW/ =, (B2)
Furthermore, provided C is not zero, ¥® and ¥®
are linearly independent. We use Eq. (B2) with C
not zero to find a second solution to the SE,
@, linearly independent of the solution [Eq.
(A7) found in Appendix A.

‘We consider the region 2>0 and define » by
T @ () =e =% (z). (B3)
Then using ¥, in Eq. (A7) for ¥®, the Wron-
skian (B2) ean be written
wy’ —vw' = De? (B4)
where D is a non-zero constant and w is defined
(without the bs of Appendix A) as

w(z) = ;V; r—f%zrﬂ. (B5)

When multiplied by 1/w? Eq. (B4) can be
integrated immediately to give » and thus ¥, @
in Bq. (B.3) as

¥, @ (2) =De*lw(z) j[ " dietLlw(§) I

+Dyetp(z), (B6)
where Dy is an arbitrary constant.

We saw In Appendix A that w—e® as 2—x
unless « equals a positive integer N, in which
case w is a polynomial. Suppose first that a=N
and consider the integral in Eq. (B6). For large 2
it diverges as e?, the first term in Eq. (B6)
diverges as ¢#?, and we must take D =0 to obtain
a normalizable wave funection. Then Eg. (B6)
reduces to the solution for ¥, found in Appendix
A. Now suppose that azN. Then the integral in
Eq. (B6) converges as ¢=* and the first term con-
verges as ¢ *% Choosing the lower limit of the
integral in Eq. (B6) as «, we must take D;=0
to obtain a normalizable wave function. Thus the
continuum wave functions are of the form
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(as=N)B
v, () =Demu(e) [ deTw(9)T*  (BY)

where w is given in Eq. (B5) and where we have
suppressed the superscript.

If we consider the region a<1, it follows from
Eq. (B5) that w>0 for 2>0. Thus ¥,/D in
Eq. (B7) is always negative for z>0. Further-

18 Equation (B7) is valid only for # greater than the
largest zero of w(z). For «<1, since w has no zeros if
2>0, it is valid for all 2>0. For aN,e>1, w has
zeros and the expression (B7) must (and can) be con-
tinued across the zeros of w to obtain an expression valid
for all 2>0.
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more, as z—0, ¥, is given by
¥, (2)»D(—14azlnz); (B8)

It follows then, from Eq. (20), that the continyum
wave function ¥y is given by

Bge a2 l2| dger
ar(—a "0 e

Thus in the notation of Sec. ITI [see Eq. (19) ],

‘z’zw(z)‘/‘ dget
M(—a) o [w(O)]’

4 We have made use of Eqs (14) and} 2(16) to write
Eq. {B9) for 2<0 as well as for z>0.

z—0.

\1’01 (Z) = (Bg)

Wal(2) = a<l. (B10)
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An inexpensive, simple, easily constructed and convincing technique is described both for
demonstrating that the speed of light is finite, and for measuring its value. All that is re-
quired is about $40 and a good oscilloscope. Detailed instructions and experimental resulfs
are given, and it is found that ¢=(29.8+0.6) em/nsec.

INTRODUCTION

An inexpensive, simple, easily constructed and
convineing technique will be described both for
demonstrating that the speed of visible light is
finite, and for measuring its value. The vocabulary
has been chosen so that the apparatus deseribed
can be constructed by people with little or no
working knowledge of high-speed electrical or
optical pulse techniques.

The measurement is performed in the following
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the National Institute of General Medical Sciences and
in part by NASA Grant NSG-581.

T Present address: Hewlett—Packard Laboratories, Phy-
sical Electronics Laboratory, 1501 Page Mill Rd., Palo
Alto, Calif. 94304.

way. A light pulser is placed at one end of an
optical bench. It simultaneously emits a pulse of
light which travels down the bench to a detector
and an electrical pulse which travels down a cable
to the trigger input of an oscilloscope, starting its
sweep. The detector receives the light pulse and
sends a corresponding electrical pulse to the
signal input of the CRT, so that a pulse is shown
on the CRT face. As the detector is slid along the

50 OHM CABLE
TO TRIGGER
INPUT

MULTIVIBRATOR PULSER

AVALANCHE PULSER

F1c. 1. Light pulser schematic.



