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Agreement Between Classical and Quantum Mechanical Solutions for a Linear
Potential Inside a One-Dimensional Infinite Potential Well

TERRANCE C. DyMski
Sinclair Community College, Dayton, Ohio
(Received 27 June 1967; revision received 11 August 1967)

For the special case in which the total energy is set equal to the classic maximum potential
energy, the Schrodinger equation is solved in closed form and is normalized. It is shown
that the expectation value of position is equal to the classical time average of position and
that the expectation value of the square of the momentum is equal to the classical
time average of the square of the momentum.

I. STATE FUNCTION

OR a well of width X, with the left wall at
the origin, the potential is specified by

V=w, X=0
V=CX, 0<X<X,
Ve=ow, Xo=X

where C is a constant.
Outside the well, y is identically zero. Inside
the well,

— (h2/2m) (d2y/dx?) + CXy = Ey. (1)
With
Imch™* = b, (2)
and
E=CX, (3)
Eq. (1) becomes
d>y/dx* - b(X, — X)y = 0. (4)
With
p=X,— X, (3)
Eq. (4) becomes
Py /dp? + buy = 0. (6)
A general form of the Bessel equation,'
p(dPy/dp?) 4 (1 — 20)p(dy/dp)
+@EH vy =0, ()
has the solution
g = u* Jo(apf), (8)

1 A. Bronwell, Advanced Mathematics in Physics and
Engineering { McGraw—Hill Book Co., New York, 1953).
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where a, a, 8, and v are constants. Comparison
of (6) and (7) shows that the solution of (8) is
g = Ay p ]1/3[(2/3)19“3/2]

+ By ¥ J-15[(2/3)b% ;372],

where Ay and By are constants.

(9)

II. BOUNDARY CONDITIONS

The Bessel series,! with the exact form of the
coefficients left out for simplicity, is

L) =t [l —&/( )4+8/()—---1
(10)
Then Eq. (9) may be written as

¢ = {[(2/3)b"]1"% Ayu + [(2/3)b%]1/3 By}
[(2/3)b*u3/2]2 1
( ) [

It is seen from Eq. (11) that By must be zero
in order that ¢ vanish at the right-hand wall
Then

yn (X)

= Ay[X, — X1% J ;5 [(2/3)b% (X, — X )?2].
(12)

It is seen from Eq. (12) that y will vanish at
the left-hand wall only if

(2/3)b% X2 = ry,

.{1— 4 (11)

(13)
where ry is the nth root of the one-third-order
Bessel function.
III. NORMALIZATION
With

R =2b% (X, — X)*2/3, (14)
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the normalization condition,

X0
1=AN2I, (X, —X)

{ Ji | 2 b% (X, — Xy }2 dx,

may be written

Y2 \1/3 T
bt AN—z( d ) ZfoN RY3[]/z(R)1*dR.
3
(15)
From?
fs“z"_’[]uﬂ(s)]zds
. _S—ZU— 5 2 ]_6
S {[J(8)12 + [ase(s)1%, (16)

and using Eq. (13), the normalization constant is

Ay = s (ry) X, 171 (17)

IV. EXPECTATION VALUE OF POSITION

When the substitution Eq. (14) is made in
the integral for <X>>, the sum of two integrals
results, one proportional to the integral in the
normalization condition, the other proportional
to a form of the second Lommel integral,’

o

[* s1u(s)12 ds = -‘;—{ [y (a) 2
2
+(1-%) [JN(anZ} (18)
Using Eqgs. (18), (17), and (13),
<X> =X, (1 — 15" (ry) P/{3U -as5(ry) 121
(19)

2G. H. Watson, A Treatise on the Theory of Bessel
Functions (The Macmillan Co., New York, 1962).

The Bessel recurrence relation

X]U’(X) jumn X]u-—l(X) i UJU(X)D (20)
with X = ry and v = 1/3, becomes
Tus {rn) = Toap{rn), (21)
so that
<X> = (2/3)X,. (22)

V. EXPECTATION VALUE OF THE
SQUARE OF THE MOMENTUM
Since ¢ is normalized and <X> is known,
<P?> is obtained from Eq. (1) by setting E
equal to CX,, multiplying both sides by ydx, and
integrating over the length of the well. The re-

sult may be written as
<P?>/9m = CX,/3. (23)

VL. CLASSICAL TIME AVERAGES

Classically, for a particle initially at rest at X

equals X, in the potential CX,
X=X,—Ct/(2m), (24)

and the time required to fall a distance X, is

t; = [2mX,/C1*. (25)
Then the time average of position is
— 2
X = -1 f1 =—X "
[:] f Xdt == X, (26)
In like manner, it is readily shown that
mv?/2 = CX,/3. (27)

It is seen from Eqgs. (22), (23), (26), and (27)
that the quantum calculations and the classical
calculations yield identical results. In addition,
substitution of typical macroscopic magnitudes
into Eq. (13) shows that the allowable well
widths are very closely spaced.



