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Quantum Theory of the Forced Harmonic Oscillator

D. M. GILBEY
Royal Aircraft Establishment, Farnborough, Hampshire, England

AND

F. O. Goopman
Department of Nalural Philosophy, University of Aberdeen, Scotland
(Received 17 February 1965)

A unified treatment by the methods of the operator mechanics is given of the quantum theory
of the harmonic oscillator subjected to an applied force which is a given, but arbitrary, function
of time. Few of the results are new, and most have appeared before scattered among papers
devoted to a variety of topics and using a variety of mathematical techniques. Emphasis is
placed on numerical methods for the evaluation of the relevant transition probabilities, and
on the equality, under certain conditions, of the classical and quantum values of the average
energy transfer to an oscillator by an impressed force. Generating functions for the transition
probabilities are derived. Some numerical results are presented for illustration.

I. INTRODUCTION

HE quantum theory of the forced har-

monic oscillator is fundamental to several
branches of physics; for example, quantum field
theory, the theory of the Mdssbauer effect, the
scattering of x rays and neutrons by phonons,
the excitation of molecular vibrations in gas-
phase collisions, and the interaction of gases
with solid surfaces (accommodation coefficient
theory).

The present paper gives a unified treatment of
the quantum theory of the forced harmonic
oscillator by the methods of the operator me-
chanics. Few of the results are new, and most
have appeared before scattered among papers
devoted to a variety of the above topics, and have
been obtained by a variety of mathematical
techniques. For example: considerable use has
been made of a paper! by Feynman on applica-
tions of the operator mechanics in quantum
electrodynamics, in which the forced harmonic
oscillator is used as an example of the application
of time-ordered operators; some of the work of
Sec. III is covered by a. paper? by Kothari and
Singwi on neutron scattering; part of Sec. 1V is
similar to a treatment given by Kaufman and
Lipkin in a paper® on the Méssbauer effect; a
general expression for the authors’ operator,

1R. P. Feynman, Phys. Rev. 84, 108 (1951).

¢L. S. Kothari and K. S. Singwi, Solid State Phys. 8,
109 (1959).

3 B. Kaufman and H. J. Lipkin, Ann. Phys. (N. Y.) 18,
294 (1962).

T (see Sec. II), has been given without proof
by Kolsrud,* although this expression is difficult
to use even when the very special form appropri-
ate to a single forced oscillator is taken.

In the present paper, emphasis is placed on
the evaluation of the relevant transition proba-
bilities, and on the numerical methods available
for this. Also emphasized is the following im-
portant result, noted before by various authors:
Under certain conditions, the classical value of
the average energy transfer to an oscillator by an
impressed force is the same as the corresponding
quantum value, both in the first-order perturba-
tion approximation,®7 and in the exact theory
for arbitrarily large forces.®='2 These conditions
are that

(a) the force on the oscillator may be expressed
as a function, f(¢), of time;

(b) f(& «)=0 and the Fourier transform of
J(t) exists; and

(c) the classical energy transfer is averaged
over the initial phase of the oscillator.

¢ M. Kolsrud, Phys. Rev. 104, 1186 (1956).

5 J. A. Gaunt, Proc. Cambridge Phil. Soc. 23, 732 (1927).

GE,) J. Williams, Proc. Roy. Soc. (Londen) Al139, 163
(1933).

7 D. Rapp, J. Chem. Phys. 32, 735 (1960).

8 M. S. Bartlett and J. E. Moyal, Proc. Cambridge
Phil. Soc. 45, 545 (1949).

® H. J. Lipkin, Ann. Phys. (N. Y.) 9, 332 (1960).

1 W. Band, Am. J. Phys. 30, 646 (1962).

u R, W, Fuller, et al., Am. J. Phys. 31, 431 (1963).

21., M. Scarfone, Am. J. Phys. 32, 158 (1964).
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Generating functions for the transition proba-
bilities are derived. Some numerical results are
presented for illustration.

II. THEORY OF THE FORCED
HARMONIC OSCILLATOR

The Hamiltonian I, of the forced harmonic
oscillator is the sum of the unperturbed Hamil-
tonian H,, and the perturbation V'

H=Hy+ V. (1)

We use the Dirac notation for the harmonic
oscillator,” in which the unperturbed Hamilton-
ian is

Hy= (Ga+3%)ho, (2)
where % is the Planck constant %, divided by 2,
w is the circular frequency of the oscillator, and «
and @ are Dirac’s annihilation and creation
operators,” respectively. The perturbation is

V=—(a+a)(h/2mw)}], (3)

where m is the mass of the oscillator.
" If the initial state of the oscillator is denoted
by the ket |4), and that at time ¢ by [#), then
these kets are related by the evolution operator,
T:

|t)=T"1). 4)
The matrix elements of 7" determine the transi-
tion probabilities of the system. The equation of
motion of 7" is

d
HT i) =it—| )y =ihT 1), (3)
dt

and, using (1), this may be written

T =H, T+ VT, (6)
We now pass to the interaction representation,!?
T* where

T%=BT, 7)
and B is the operator
B=exp(tHot/ ). (8)
It {follows from (6)—(8) that
PhT = VT, 9
where
V*=BVB™, (10)

13 P. A. M. Dirac, The Principles of Quantum Mechanics
(Clarendon Press, Oxford, 1958), Secs. 34 and 44,
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Now,

Hya=a(Hy— hw), 11)

and an extension of (11) to powers of I{,, and to
power series involving H,, yields

exp ((Hot/h)a=a exp[i(Ho—hw)t/h], (12)
and therefore
BaB '=a*=qa exp(—iwt). (13)
Similarly,
BaB'=a*=a exp{iwt), (14)

and from (3), (10), (13), and (14) it follows that

V*= —[a exp(—1wt)+d exp (iwt) ]

X (h/2mw)if.  (15)

If we define a function K (¢) of time by
t
K(t)= (2mhw)”3/ F(s) exp(iws)ds, (16)
0

then (15) may be written as follows:

V= —h(Ka+Ka), (17)

where K is the complex conjugate of K. Compari-
son of (9) with (17) vields

7% = (iRa+iKa)T*, (18)
and, in view of this relation, it is natural to
define another operator S, by

S=exp(—iKa)1+, (19)
where

Sit=0)=1I (20)

and 7 is the unit operator. It follows from (18)
and (19) that the equation of motion of .S is

S=exp(—iKa)iKa exp(iKa)S.  (21)
The Taylor series in powers of X,
exp(—1Ka)a exp(1Ka)
(iK)
=q—1K[d,a]+ 2—?——[6, La,a]—---, (22)
terminates after two terms because
[G,a]=—1. (23)



QUANTUM OSCILLATOR

Therefore, from (21) to (23),
S =ik (a+iK)S, (24)
which, with the condition (20), has the solution
t

S=exp(iKa) exp|:— / ' K(s)K(s)ds]. (25)

0
The real part of the integral in (25) is $| K |2, and
we may denote its imaginary part by 8; then,
from (7}, (8), (19), and (25), we obtain
T=exp(—1Ht/h) exp(iKa) exp (iKa)

Xexp(—3|K|[?) exp(—if).
A general expression for this operator T, has
been given without proof by Kolsrud.*

(26)

For the calculation of transition probabilities,
P, between eigenkets of Hy, only the moduli
of the relevant matrix elements of 7', | T\, |, are
used. The first and last exponentials in (26) give
only phase factors which disappear when the
moduli are taken; also, a change of time origin
serves to make K =K = |K|. Therefore, we may
introduce the operator G

G=exp(i|K!a) exp(i| K |a) exp(—5]K][?), (27)
from which it follows that
|Gon | = | T |- (28)
There is a lemma® which states that, if
[4,[4,B]]= [B,[4,B]]=0, (29a)
then
exp(Ad+B)=exp(d) exp(B)
Xexp(—% 4 !B])y (ng)

from which, for future reference, it follows that

exp{A4) exp(B)=exp(B) exp(4)

Xexp([4,B]). (30)
Using the lemma (29), G may be written
G=exp[ik(a+a)], (31)
where % is written in place of | K|
t
k() = 2mhw)H / f(s) exp (iws)ds}. (32)
0

“H. Messiah, Quantum Mechanics (North-Holland
Publishing Company, Amsterdam, 1961), p. 442.
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The matrix elements G,, of G (between
simple harmonic oscillator eigenstates) are imagi-
nary if m—n is odd, and it is convenient to
define an operator F, whose matrix elements
are all real and are of the same magnitude as
the corresponding elements of G

Fon=explir(m—n)/2 1Gmn. (33)
The operator, IV, defined by
N=daq, (34)
has the following properties
N[m)=m|m), (35)
[N,e]=—a, (36)
and
[N,a]=a. (37)
It follows that F is the operator
F=exp(izN/2)G exp(—iaN/2). (38)
Now, it follows from (36) that
Na=a(N—-1), (39)
and an extension of (39) vields
exp(alN)a exp(—aN)=aexp(—ea), (40)

where « is a constant [compare the working
from (11) to (13)]. (40) may be interpreted as a
similarity transformation which changes a to
a exp(—a); it is easily verified that @ changes to
dexp(a). From the properties of similarity
transformations, any function of ¢ and @ changes
to the same function of a exp(—a) and d exp () ;
that is,

exp(aN)g(a,a) exp(—al)
=gla exp(—a), d exp(a)).

Application of (41) to (31) and (38), with
a=1r/2, vields

(41)

F=exp[k(e—a)]. (42)

In terms of the operators T, G, and F, the transi-

tion probabilities are given by
PmnziTmnIZ‘:lenlglemnIQ:anz; (43)

the reality of the F,, is shown below—see, for
example, (52),
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III. POLYNOMIAL AND ANALYTICAL FORMS
FOR THE TRANSITION PROBABILITIES

Elementary properties'® of the operators ¢ and
a in connection with oscillator eigenstates are as
follows:

al0y=0, (44)
almy=milm—1), (45)
alm)y=(m+1)tm+1), (46)

and
(0]aras| 0y =78, (47)

and there are corresponding conjugate relations
involving the bras (m|. Using (46), the matrix
elements F,., may be written

Fon=(m| Fin)=(0]a"Far|0)(m!n!)—3. (48)

Substituting for F from (42) into (48), and using
the lemma (29), we obtain

Fun={0]a™ exp(—ka) exp (—3k?) exp (ka)a"|0)
X (mln!)—t
={0|exp(—ka)[exp(kd)a exp(—ka) ™
X [exp (ka)d exp (—ka) I* exp(ka) | 0)

X (min)Fexp(—3k2). (49)

By considering the series (22) of two terms, with
1k replaced by —k, and its counterpart with a
and @ interchanged, we may write (49) in the
form

(0[exp( ka) (a— k)™ (@+k)" exp(ka)|0)
X mn)texp(—31k2). (50)

The first two exponentials in (50) may be re-
placed by unity on account of (44), and (a—k)™
and (d-+k)» may be expanded using the binomial
theorem to obtain

m W\ [N
Fun=2 £ (+)() (=m0l
r==0 =0 7. Ry
X (mln!)texp(—3k?), (51)
and use of (47) reduces this to the form
Fon=(=)mkmtn(m!nl)}
1 ()
Xexp(— 1893 (52)

=orl(m—r)!(n—r) her
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This establishes the reality of the F,., which is
necessary for (43) to hold. Apart from the (—)™
factor, this result is symmetric in m and #; the
summation in fact extends only to the smaller of
m and #, all other terms vanishing. The series is
easily cast into hypergeometric form; assuming
that n > m, the result is

)

X1 Fi(—m, n—m-+1; k) exp(—3k?).

=(=)"—

(53)

In terms of the Whittaker functions!s A, ,:

(=)
<—> kMA(m_HH 1) 5 (n—m) (k ) (54’)

Fop=———
(n—m) \m!

Relation (43) combined with (52)—(54) yields
expressions for the transition probabilities
P

IV. GENERATING FUNCTIONS

A. Generating Function for the F,,

To derive a generating function for the F,
by operator techniques, we may start by con-
sidering the function

(u ‘U) Z Z XFImn- (55)
m=0 n=0 (m!n!)}
Using (48), this may be written
3 (u,v) =(0lexp (ua) expLk(a—a) ]
Xexp (va)|0), (56)

and, making use of the lemma (29) and (30), we
obtain

3 (u,v) =exp (54°)(0 | exp[ (v — k)@ ]

Xexp[ (u+k)a]|0) exp[ (u+k)(v—k)] (57)

As in relation (50), the two central exponentials
in (57) may be replaced by unity; the final form
for & is

f}(u,v) =exp[ — iRt uv+t (v—u)k].  (38)

151, N. Sneddon, Special Functions of Mathematical
Physics and Chemistry (Oliver and Boyd, Edinburgh,
1961), p. 37.
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B. Generating Function for the P,,,

To derive a generating function for the P,,,,
we consider the function

Bb,7)= f i 6™7"P .

m=0 n=0

(59)

In view of the properties of the operator N
defined by (34), ¢™ is the mth diagonal element
of the diagonal operator exp(V lnes), using har-
monic oscillator eigenkets as basis; therefore,
using (43),

B, =3 > [exp(V n6) T

m=0 n=>0
X [exp(NV In7) JnnFmad. (60)

Making use of the unitary nature of F, the fact
that N is diagonal in this representation, and
relation (42), we obtain

B(8,7) =§;0 io Fonl[exp (N In7) Jun
XY mlep (V10
=Tr{F exp(IV In7) F-1exp(N 1nb)}
=Tr{explk(e—a)]exp(N In7)

Xexp[ —k{a—a) Jexp(NInd)}, (61)
where Tr{A} denotes the trace of 4. Applica-
tion of (41) to (61) with a=Inr and g(a,q)
=exp[ —k(a—a)] yields

B, 7)=Tr{exp[kla—a) ] exp[ —k{a/7—d7)]
Xexp[N In(70)1}. (62)

Using the lemma (29) to split the first two ex-
ponentials, followed by the rule (30) to collect
together the terms in @ and @, respectively, we
obtain

B6,7)=Tr{exp[ka(r—1)]explka(l—1/7)]

Xexp[N In(76) 1} exp[k2(r—1)]. (63)

To proceed further, we write down the result
obtained by premultiplying (41) by exp(ya) and
posimultiplying it by exp(alN), with g(e,d)
=exp(—va):

exp (va) exp(aN) exp(~va)

=explya{l—exp(—a)} Jexp(al). (64)
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This rule is applied to (63) with a=In(7§) and

vy=k0(r—1)/(r0—1) (65)
to obtain
B8, 7)=Tr{exp(ya) exp[ka(r—1)]
Xexp[ NV In(78) Jexp(—vya)}
Xexp[—ky(r—1)]exp[R2(r—1)], (66)

where the first two exponentials have been inter-
changed by using (30). The trace is invariant
with respect to similarity transformations, so
the first and fourth exponentials may be dropped ;
the factors outside the trace may be merged:

B0,7) =Tr{exp[ka(r—1)] exp[N In(+8)]}
Xexp(ek?), (67)

where

e=(r1=1)(1~v/k)

——(1=7)(1—6)/(1—18). (68)

In this representation, the second exponential is
diagonal while no power of @ higher than the
zeroth has any diagonal elements; therefore

PB8,7) =Tr{exp[N In(+0) ]} exp(k?)

= oxp (k) 3 (r8) "= (1= 7o)

Xexp(ek?), (69)

from which it follows that the final form for P
is3,8,16

B@O,7) = (1—76)
Xexp[~k(1—0)(1—7)/(1—+6)]. (70)

V. MOMENTS OF THE PROBABILITY
DISTRIBUTION OF THE FINAL
QUANTUM NUMBER

The moments, vn-(k), of the probability dis-
tribution P, of %, for given m and k, are of
interest'”; they may be treated in a manner
analogous to that used for B (9,7)—see the work-

16 H, Ott, Ann. Physik 23, 169 (1935).
17 K. Rebane and O. Sil'd, Semiconductor Physics Con-
ference, Prague (1960), paper J 10, p. 353.
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TaBLE I. Values of Q(m,n,r,k) derived from relations (78).

AN
N m—3 m—2

m1 -1 711 -1 -2 -3
0 0 0 0 1 0 0 0
1 0 0 k2 0 m+1 0 0
2 0 k4 —k? (2m—+1)k? m+1 (m+1(m+2) 0
3 ¢ —3k* 3mkt4-k2 k? (m+10)[1+3k2(m+1)]  3(m+1)(m+2) ¢
4 b b —k2 =2k 3m—2) (Cwm+DRE43R'Cm2+2m+1) (m4+1)[1-+2k2(3m+3)] b ’ b
5 [ P P ]

B+10k'(2m—4-1) P ¢

ing after (59)

v (B) = é WP (71)
= {m | FN"F~*|m)
= {m|exp(ka) (N+ka)" exp(—kd)|m)
= (m | (N+ka+ka+k)r|m). (72)

Since @ and d@ have no diagonal elements, the
mean final quantum number, v, (k), is

vm1(R) =m— k2

[ Note that k?%w is the classical value of the work
done by the force f(¢) for any initial oscillator
amplitude, averaged over the initial phase—see
Appendix 2.} The moments, w..(k), about the
mean may be obtained from (71) and (72) by
replacing n by n —m —k?

wmr (B) = (m| (N —m~+ka+ka) |m).

(73)

(74)

Now consider the quantities, Q(m,n,7,k) de-
fined by

m!\Q(mn,r,k)={0] (ka)"(N —m~+ka+ka)’

X(a/k)»[0);  (75)
it follows from (46), (74), and (75) that
Hmr(k) = Q(WL,WL,?’,k). (76)

On account of the commutation rules (23) and
(37), we may write
(N—m+ka+ka)(a/k)y"=(a/k)"(N—m-+ka+ka)

, +n(a/k)"+n(a/k), (77)
and, using (34) and (44), we may substitute (77)
into (75) to obtain the following recurrence rela-
tion for Q

Qm, n, r+1, k) =k2Q(m, n+1,r, k)
+m—m)Q(m, n, r, R)+nQm, n—1,r, k).
(78a)

Therefore, the Q's may be built up from the
starting values—-see (47) and (75)-—

Q(m,n,0,k) = bmn, (78b)

and the moments about the mean deduced from
(76). The relation (78) is ideal for numerical
computation; the process is carried out sym-
bolically in the Table I to deduce formulas for
the first few moments. The values denoted by ¢
in the table are not zero, but do not affect the
moments up to ums(k); because of (76), these
moments may be read off from the m =% column

30,25

0124

0.087

0.04-

o
o
=

T
4

F16. 1. P, 25 as a function of 2.
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O.12+

0.08

0.04+

OSCILLATOR
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]
L}
e //“\¥///ﬁ\\\\\\_;
(\/\/\/\/\/\/\/\/\/\/\/ \ 2
; ; ; K
40 80 120

F1G. 2. P3 05 as a function of k2%

of the table

pmo (k) =1, (79a)

pm1 (k) =0, (79b)

ume (k)= 2m-+1)k2, (79¢)

pms (k) = k2, (79d)

wma(k) = Cm+-1)+302m?*+2m -+ 1)k, (79)
and so on.

We emphasize that the average final energy,
(vm1+3) ho, is given by (73) as (m-+3)ho+khw;
this is the initial energy plus k2hw, and is the same
as the classical result averaged over the initial
phase of the oscillator—see (99). Also, the dis-
persion, umz(kw)?, is given by (79¢) as 2 (m+3) ke
-k*hew; this is twice the initial energy times the
average energy uptake, and is the same as the
corresponding classical result—see (102). How-
ever, the higher moments differ from their
classical values.

That ums, as well as v,1, has its classical value
averaged over the initial phase of the oscillator
is mentioned by Gol'dman et al.,'* but their
derivation is more complicated than the above.

VI. NUMERICAL METHODS

If m, » or k is small, numerical values of the
transition probabilities P,.,(k) may be readily

181, I. Gol'dman, ef al., Problems in Quantum Mechanics
(Infosearch, London, 1960), p. 141.

obtained from (43) and (52). The following
analysis is generally valid, however, and enables
us to evaluate P, (k) for the “classical”’ regime,
in which m, n, and % are all large. A recurrence
relation is deduced which allows calculation of

Ra(@5)
\ 1
1 1
!
04104
CLASSICAL
DISTRIBUTION
OF FINAL
ENERGY
—_—
>
(&
[+ 4
w
z
W
) >
= z a8
= < <
z Yzz
cos{ = ke
[ ¥
N
| l.l | ..l | Ml “Ih.
o . i . >N
20 40 60

F1G. 3. Ps, (25) as a function of #.
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F;s,n(s)
r
O-IOﬂ | !
i CLASSICAL |
| DISTRIBUTION |
! OF FINAL !
ENERGY
~
(&)
[+ 4
g
5 35
g 32
z Zz
Wy
-
< Z
0.05+ E 2
2 3>
N //
"
] l ’l\ I’ I H hh“ .
o 2 5 el

Fi1G. 4. Pgs, 1(5) as a function of #.

Fmn(B) for arbitrary & and # up to large values
of m.

To proceed, we write down the results ob-
tained by postmultiplying (41) by exp(adNV),
with g(a,d) = F=exp[k(ac—a)]

exp(alV) exp[k(a—a)]
=exp[k{a exp(—a) —aexp(a)} ]

Xexp(aN). (80)

Differentiating both sides of (80) with respect
to a, and setting a =0 yields

Nexplk(a—a)]=exp[kle—a)y]N

d L )
+[—d—{exp[ {aexp<_a>—aexp<a>;];]ﬂ

& SN

(81)
Using (29), (42) and the commutator

la+ad,a—al=—2, (82)

M. GILBEY AND F. O.
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the result (81) may be written as follows:

NF—FN

[ fexpl—abata +4 -]
da

a={

= —[R+k(a+a)]F. (83)

Taking matrix elements of both sides of (83),
we obtain, in view of (35), (45), and (46),

(1~ 1) Fom = — B Fos— R (M~ 1) Fpp 1 0

—~km%Fm_1,n. (84:)

A similar relation is given by Kothari and
Singwi.? For numerical work it is more convenient
if odd powers of & and the square roots can be
eliminated, and for this reason the quantities
Lmn are defined

Fon=FE""(m! /0 Ly, (85)
Combining (84) and (85), we obtain
(m+ 1)Lm+1,n+ (m - n+k2)Lmn
+E L, 1.=0, (86)
TF?O,H(IO)
: l
CLASSICAL
DISTRIBUTION
OF FINAL
. ENERGY,
¢
0.08 I ‘5
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together with, from (52) and (853),
Lon=exp(—%k?), (87a)
and
Lin=(n—Fk* exp(—3k?). (87b)
The recurrence relation (86), with starting values
(87), allows speedy and accurate computation of
the L, to large values of m. From (43) and (85),
the transition probabilities may then be
computed
Porn=k""2(m!/n!) L. (88)
As an illustration of the calculations of P, (&)
as a function of k2, Figs. 1 and 2 contain plots of
P3o.25(E?). Typical probability distributions for
the final state are shown in Figs. 3 to 5, in which
P5.(25), Pss.(5) and Py ,(10) are plotted,
respectively, as functions of % ; the corresponding
classical probability curves are also shown for
comparison.
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APPENDIX A. THE FIRST ORDER
PERTURBATION RESULT

Approximations to P, for small 2 are ob-
tained by expanding either (31) or (42) as far
as a given power of k, and then using the results
(43), (45), and (46). The approximation obtained
by expanding only as far as terms in k% is

Pmn%amn+k2[<m+1)6m,n—1+7’n6m,n+1

— (2m+1)8nn]; (89)
The first two terms inside the bracket are the
well-known first-order perturbation result. The
first-order selection rules that, given the initial
quantum number , the final quantum number
may be only m—1, m or m4-1, are embodied in
(89). Furthermore, since the energy transfer to
the oscillator is Aw, 0 and — Zw, respectively, for
the three possibilities, it is clear that the average
energy transfer is just the classical value k%w;
this fact has been noticed by many authors."7
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APPENDIX B. THE CLASSICAL
FORCED OSCILLATOR

This Appendix is based on the work of Ref. 19.
The Hamiltonian H, of the oscillator is, in an
obvious notation,

H=p*/2m+mo?q*/2—qf(1), (90)
and the equations of motion are
p=—(0H/dq) = —muw’q+ f (), (91)
and
¢=(0H/ap)=p/m. (92)
By the introduction of
7= p —imwy, (93)
one obtains
2= f(t) — 1wz, (94)
the solution of which is
z(1) exp (twt) =2(0)+ 2mhw)K (£), (95)

where K (¢) is defined by (16). In terms of z(f),
the energy H(?), of the oscillator may be written
simply as

H(5)=|2(t)[*/2m. (96)

The ‘“‘unperturbed energy,” H(0), is therefore
given by

H(0)=12(0)[*/2m, (97)

and it follows from (95) to (97) that the energy
at time ¢ is given by

H(f) = H(0)+ k2ho— k (2hw/m)} | 2(0) |cosh,  (98)

where 6 is the ‘“‘phase angle’” between z(0) and
K, and k is |K|—see (32). It follows from (98)
that, averaging over the initial phase 6,

(H(8)) = H (0) + Fho. (99)

Therefore, the energy uptake by the oscillator,

1 [,. O. Landau and E. M. Lifshitz, Mechanics (Perga-
mon Press, Ltd., London, 1960), Vol. 1, p. 63.
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averaged over the initial phase, is k%hw; this is
the same as the corresponding quantum result—
see (73).

From (98) and (99), it follows that the classical
moments u,, of the final energy about the mean
are given by

par=k¥|2(0) | 2he/m) T (r+3)/xr! (100a)

and

pors1=0. (100b)

M. GILBEY AND F. O.

GOODMAN

Hence, the dispersion u,, is

pe=2|2(0) |*heo/m, (101)
which, in view of (97), may be written
wa=2H(0)k*hw. (102)

This is twice the initial energy times the average
energy uptake, and is the same as the corre-
sponding quantum result—see (79c). The higher
moments differ from their classical values.

Potential Scattering
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The well-known expression of the scattering amplitude is rederived from the integral repre-
sentation. The exact equivalence between the integral and differential formulation is ex-

plicitly demonstrated.

HE cross-section of the scattering of a single

particle by a spherical potential is usually

derived from a differential equation. One solves
the Schrodinger equation?

(V= U+k)¥ (1) =0, U=Q2m/m)V(r) (1)

and requires the wavefunction ¥(r) to have the
asymptotic form

W (r) — e f(9)r et (2)
The éross section is then given by
a(0)=170) %
The solution of the equation is well known,!
W(r)= (kr)~1 > 2+ Vit u(kr)Pi(cosf), (3)

where u;(kr) satisfies the equation
(d®uy/dr?)+[k2— U@r)—1(1+1)/r* Jui(kr) =0,
and is normalized asymptotically to

wi(kr) —— sin (br— (Ix/2) +81).

1t can be easily shown that the phase shift §; is

LT, Y. Wuand T. Ohmura, Quantum Theory of Scattering
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962),
Sec. A.

given by!
sing; = —/ (wr/2k) S 1y (k) U (r)u (kr)dr.  (4)
0

where /., is the spherical Bessel function.

In the currently used integral formulation!-?
and the symbolic methods?: of scattering theory,
the cross section is given by the matrix element

i1 2m 12
a(8) = ;“;(471('1 Viv)|,

T

9

(5)

where ¢, is the final-plane wave state.

Since the problem of potential scattering is
exactly soluble, it is instructive to compute the
matrix element of (5) in the coordinate represen-
tation. Let the polar coordinates of k' be (k,6,¢)
and the coordinates of r’ be (v',6’,¢'), then we

have
1 2m = v g
4 / / / eV
4'7r h? J 0 0 1}

L XV (t')r'? sing’de’do’dr’

(6)
2 W. E, Gettys, Am. ]J. Phys. 33, 485 (1965).
#B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469
(1950).
1 M. L. Goldberger and K. M. Watson, Collision Theory
(John Wiley & Sons, Inc., New York, 1964).
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