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Eigenfunctions of the Hydrogen Atom in Momentum Space

James J. KLEIN
Depariment of Physics, The University of Calgary, Calgary, Alberta, Canada
(Received 28 December 1965; in final form, 20 June 1966)

The Schrédinger problem of the hydrogen atom is solved using toroidal coordinates in mo-
mentum space. The wavefunctions are expressible in terms of Jacobi polynomials and ordinary

trigonometric functions.

INTRODUCTION

IT is well known that the degeneracy of the
energy levels of the hydrogen atom in
Schrédinger’s theory allows the wave equation to
be separated in both spherical polar coordinates
and paraboloidal coordinates. The wave equa-
tion in momentum space is similarly degenerate
and therefore must allow separability in co-
ordinates other than the usual spherical polars.
It is shown below that the other system in
momentum space is the toroidal system (&,7,¢),
and that the wavefunction has the structure
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where the polynomial Fy,, is a Jacobi poly-
nomial of order /. Further, just as the para-
boloidal wavefunctions in position space can be
written as hybrids (that is, linear combinations)
of the spherical polar wavefunctions, so too, in
momentum space, the toroidal wavefunctions
can be written as combinations of the usual
spherical wavefunctions.

The literature on the momentum eigenfunc-
tions of the hydrogen atom dates back to the
work of Podolanski and Pauling in 1929.! These
authors carry out the elegant, but complicated,
Fourier transform of the position space eigen-
functions which had been found by Schrédinger
three years earlier. Their results showed that
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1 B. Podolanski and L. Pauling, Phys. Rev. 34, 109
(1929).
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where po=1/n reciprocal of principal quantum
number (p¢ being measured in atomic units),
and Cy’(x) is a Gegenbauer polynomial of order
N, defined as the coefficient of #¥ in the ex-
pansion of (1—2hx+x2)~" is powers of k. The
first factor on the right in Eq. (2) can be ab-
sorbed in a new wavefunction defined as
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The next advance occurred in 1935 when the
Russian theoretician V. Fock recognized that
the function defined by Eq. (3) is simply the
stereographic projection of a hyperspherical har-
monic onto the three-dimensional p.p,p.-hyper-
plane.? In other words, by writing the quantity
2ppo/ (po2+9?) as sina, and the quantity (p2—po?)/
(P24-po?) as cosa, (where cose is the polar angle
on a hypersphere of radius p,), one recognizes
® to be a spherical harmonic associated with a
three-dimensional spherical surface embedded in
four-dimensional Euclidean momentum space.
The wavefunction is simply:

® (a8, ) ~ (sine)'Cp_s_i*(cosa) (sind)™

cosMm ¢
X Ci_p™ ¥ (cosb) . @
sinm ¢

In the above expression, we have written P;™ in
terms of a Gegenbauer polynomial. The restric-
tions on ! and m I<n—1 m<[are obvious.

It is clear that the momentum eigenfunctions
possess the same degeneracy that characterizes
the hyperspherical harmonics.

After reading Fock’s work, I reasoned as

follows. If one were to reorient the polar axis

¢ V. Fock, Z. Physik 98, 145 (1935).
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of the hypersphere, a pure spherical harmonic
in this new frame can be written as a linear
combination of the harmonics which relate to
the original polar axis. Indeed, on a two-dimen-
sional spherical surface, the addition theorem of
spherical harmonics is simply a mathematical
expression of this property. The stereographic
projection of those nodal lines in the new system
would be circles whose centers are displaced
away from the origin. (See Fig. 1 below.) Such
circles are encountered in plane bipolar co-
ordinates,® and are designed by £=const in the
notation of Margenau and Murphy.

If one were to imagine a similar sort of pro-
jection applied to the hyperspherical harmonics,
one sees that certain linear combinations of such
harmonics possess nodal surfaces which, in
stereographic projection, yield the nodal sur-
faces characteristic of toroidal coordinates. The
latter are generated from plane bipolar coordi-
nates by rotating the orthogonal family of circles
¢=const and n=const about the p, axis.

The hyperspherical functions satisfy a simple
eigenvalue equation (which is usually solved by
separation into functions of «, §, ¢). After the
transformations implied by a stereographic pro-
jection have been carried out, the new equation
should be separable in toroidal coordinates in
the p,—p,—p. space. This coordinate system
is therefore analogous to the paraboloidal system
of position space.

SOLUTION OF THE WAVE EQUATION

The hyperspherical harmonics satisfy the dif-
ferential equation

V2p=\3,
where
I¥) )
V2= (sin2a)“1—(sin2a—>
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d d
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8 H. Margenau and G. Murphy, The Mathematics of
Physics and Chemistry (D. Van Nostrand, Princeton, N. J.
1956), 2nd ed., Vol. 1, pp. 187-191.
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The line element ds® on the hypersphere is
ds?=po?(de®+sin’adf®+sin’a sin®dd¢?). (6}

The transformation to toroidal coordinates in
the p.p,p. hyperplane is carried out by first
performing the stereographic projection of (a,8, ¢)
into (p.p,P.) and then introducing toroidal co-
ordinates in the usual manner.*

By direct calculation, we obtain the line ele-
ment in the toroidal system in the hyperplane as

dst= p sech?y(d&-+dn*) +tanh®yd*].  (7)
The Laplacian
V2= (1/4/2) (8/3x%)[\/g g7(3/9x7) ],

where

sech’y 0 0
gi= 0 sech?y 0
0 0 tanh?®y |

Hence in the toroidal system the equation V¢
= —A® reads as {ollows:
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Assume a solution of the form
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and G (y) satisfies the equation
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4 Reference 3, p. 190.



EIGENFUNCTIONS IN MOMENTUM

where G(n) depends on a quantum number !
(related to \) as well as on k and m. (This [ is
not the same as the ] used in spherical polar
coordinates.) ,

With the change of variable z=sech?s, the
equation reads:

d dG\ kG mG A
(-exS)E0_ 20 2

— . (11)
dz dz 4z 4(1—2) 4

This equation has singular points at =0, 1.
Setting Giim (2) =282(1—2)™? X g(2), we get

(2 —2) (d%¢/dz) + [ (k+m—+2)z— (k+1) 1(dg/dz)
— 1A — (k+m) (k+m+2)1g=0.

Thisis of the form of the hypergeometric equation

(B2—2) F'+[(1+p)z—glF' —l(p+DF=0 (12)

With p=1+k+71’h g=1+ky k=0, 11 2"'! and

Lp+D)=i[A— (ktm) (k+m+2) ]

Thus,
A=4](1+k+I+m)+ (k+m) (k+m-2).

The solutions of Eq. (12) are Jacobi poly-
nomials, provided [ is integer.5 Finally then, we
have

G(n)=J(1+k+m, 1-+k; sech?y)
X tanh™y X sech?®y,

(13)

(14)

and therefore we have as the momentum-space
eigenfunction in toroidal coordinates

Yaim (£, ) ~Ti(14k-+m, 1+k; sech?y)
coskg cosm @
|

X tanh™y-sech®y X { .
sink{

sin# ¢

cosE \?
Xi(l— ) (15)
coshpy
The last factor corresponds to the factor of
B/ P+,
which hitherto had been suppressed.

DISCUSSION OF THE WAVEFUNCTIONS

The nodal surfaces in this wavefunction can
be classified as follows: there are m nodal planes
corresponding to ¢=const 0< ¢<2x, k& nodal

5 Reference 3, p. 74.
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Fic. 1. Stereo-
graphic projection
of nodal lines on a
spherical surface.

planes corresponding to ¢=const 0<¢(<w, 27
nodal toroids corresponding to n=const 0 <y <
(the nodal toroids count twice). See Fig. 2.

The total number of nodal surfaces is m-+k
+21, hence the principal quantum number #
must be z=14m-+k+ 2L

Let us consider some typical excited states of
hydrogen in the momentum representation in
toroidal coordinates. The first excited state #n= 2,
must have the quantum number /=0, but either
k=1 or m=1. The Jacobi polynomial Jo(p,q; 2)
=1 hence there are no toroidal nodal surfaces.
The possible eigenstates are, omitting the ubig-
uitous factor of 1[1— (cost/coshy) 2

cosf 2s
<I>100~sech'r)><{ .
sing 29,
and
Cos @
<I>100~tanh1)><{ X ZP,, Zpy
sin ¢

The correspondence with the states in spherical
coordinates® is indicated at the right.

It is well known that application of an elec-
tric field to the #=2 state of hydrogen generates
the hybrid states 2s+2p,. having paraboloidal
nodal surfaces. A similar effect occurs in mo-
mentum space; the hybrid states are ®140~sechy
X (cost=ksing). Their nodal surfaces are the
spheres ¢=n/4, 3n/4 [see Fig. 3(a)]. Thus, in

E
T g=const

Fic. 2. Nodal sur-
faces in toroidal coordi~ g AN

nates. The angle of ! b ‘/

A ! s
rotation about the p, T AVIB — Py
axis is ¢. The figure AN ! \ ’

ATTS"M =const
\

above is the ¢=0
plane.

6 H. Bethe and E. Salpeter, ‘‘Quantum Mechanics of
One- and Two-Electron Atoms,” Handbuch der Physik,
S. Flugge, Ed. (Springer-Verlag, Berlin, 1957), Vol. XXXV,
p. 125.
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4 Pz

CY g=mn/8
Px Q =Px
Kkg =3W/4

B=z=5m/8

(@) (b)

1,1=0, m=0; (b) nodal

F1c. 3. (a) Nodal surfaces for &
2, 1=0, m=0.

surfaces for k= 7
momentum space, the effect of the applied field
is to shift the charge distribution so that points
of zero-change density lie on either of the two
off-origin spheres indicated.

It is interesting to compare the situation with

that which is produced by application of a mag-

netic field (along the z direction). In the latter
case, it is the cose, sing states which become
hybridized, but with a phase difference in time
of w/2. Thus, ®15~tanhy X (cose cosE_ i+ sine
XsinE,t) = tanhy X cos (4= ¢+ E.f) i.e, in the cus-
tomary complex mnotation ®ie0~tanhyXexi®
XeEst B, denotes the energy of the two Zeeman
states m= -1, associated with the #=2 level.
Returning now to the discussion of the hydro-
genic wavefunctions, we may consider the #=3
eigenfunction. Here the case /=1 is possible,
the corresponding eigenfunction being: ®o1o
~J1(1,1; sech?y) X1 X1=1—2 sech?y, the £ and
¢ dependence disappears since k=m =0, in order
that #=14+k+m—+2l. There is a nodal toroid
in this state designated as n=cosh™V2, which
counts as two nodal surfaces. The other eight
eigenfunctions are easily seen to be

cos2§

@200~S€Ch2‘r]><{ k=2, m=0, l=0,
sin2£

P93 ~sechy tanhy X
cosé  [cosg
{ X{ : =1, m=1, [=0,
sinf lsing
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cos2 ¢

<I>002~tanh2n k=0, m=2, I=0Q,

sin2 ¢

The application of a uniform external electric
field hybridizes the ®,9 states so as to produce
states each having two nodal spheres. For ex-
ample, the state $g0~sechly(cos2f—sin2f) has
nodal spheres designated as: ¢==/8, 5x/8, just
as in position space when two nodal paraboloids
are present in the hybrid state produced by the
Stark effect. The position of these nodal spheres
is shown in Fig. 3(b). The state $410~1—2 sech?y
can be shown to be a hybrid of the 3s and 3d
states, that is

2 2
@010’\’—%{4(? Po)_l
ptpe
2ppo \? 3 cos¥—1
) x |
P2+P02 2

The first two terms in brackets come from the
3s state; the third term, from the 3d state. This
type of hybrid wavefunction would be produced
by a quadrupole field originating at the nucleus.
The quadrupole potential has the momentum-
space representation

V(o) 4703 cos?f—1 4:7TQ2 sin?¢é —sinh?y
p = ———l—---mmm - ————,e—,

3 2 3 sin’t+sinh?y
Because of the complexity of the last expression,
it is not worthwhile to pursue this point further.

CONCLUSIONS

We have shown that the hydrogenic eigen-
functions are separable, in a certain sense, in
both the toroidal as well as the more usual
spherical polar coordinate system in momentum
space. This is a result of the special Coulomb
degeneracy present. It is not clear whether the
toroidal system would be useful for calculation;
at present these wavefunctions appear to have
only pedagogical value.



