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The Kepler Problem in Two-Dimensional Momentum Space*

Ta1-1car SHIBUYA AND Carr E, WuLrMAN
Department of Physics, University of the Pacific, Stockton, California
(Received 24 February 1965)

Fock studied the hydrogen atom problem in momentum space by projecting the space
into a 4-dimensional hyperspherical space. He found that as a consequence of the symmetry of
the problem in this space the eigenfunctions are the R, spherical harmonics and that the eigen-
values are determined only by the principal quantum number #. In this paper we note thatif his
method is applied to the 2-dimensional Kepler problem in momentum space, the eigenfunctions
are R; spherical harmonics, Yin, and the eigenvalues are determined only by the quantum
number /. These facts enable one to give a visualizable geometrical discussion of the dynamical

degeneracy.

INTRODUCTION

GEOMETRICAL illustration of a dynam-

ical symmetry is often a great aid to the
understanding. We have found that a 2-dimen-
sional analog of Fock’s treatment of the “acci-
dental” degeneracy and “‘extra’ symmetry of
the hydrogen atom! is particularly helpful in
this regard.

Fock began his discussion of the dynamical
symmetry of the hydrogen atom with the mo-
mentum space Schrédinger (integral) equation
for the atom. He made a change of the inde-
pendent variables in this equation and then
redefined his dependent variables to symmetrize
the integral equation. We proceed analogously
for a corresponding 2-dimensional problem.

I. FOCK TREATMENT OF THE TWO-DIMENSIONAL
KEPLER PROBLEM

The Schrédinger wave equation for an electron
in the potential, V(r), is given in Hartree's
atomic units by

QQE+V)u(r) =2V (t)ulr), (1)

where r is the position vector of the electron,
#(r) the wavefunction, E the electronic energy
associated with % (r), and V2 the Laplace operator
for the electron.

This position space equation may be Fourier-
transformed into a momentum space equation,

* This is taken from the introduction to the M.Sc. thesis
of Tai-ichi Shibuya.
1V, Fock, Z. Physik 98, 145 (19353).

which in the 2-dimensional case is
0ot @ = =2 [ Vo-p)s@)er. @

The corresponding equation in the 3-dimensional
case is formally the same if d2?p is changed to @®p.
In Eq. (2),

poP=—2E; (3

#(p) = 2m)! f (),

(@)
w(@) = 2m) [ e ()
and

V'(p) = 2n)2 | e~®rru(r)d%,

V(t) = / vt 1 (p)d2p.

Analogous equations hold in the 3-dimensional
problem if 2r — (27)* and d* — &°.

As shown in the Appendix, if the 2-dimensional
potential is “Coulombic,” that is,

V)= -2/, (6)
where Z is the charge of the center, then
V'(p)= —Z/27p. 7
Substitution of (7) into (2) gives
(P9 =— | 0y @
= J |p—p'|
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THE KEPLER PROBLEM

Now we may project the 2-dimensional mo-
mentum space onto the 3-dimensional sphere of
radius p, in the same way that Fock did for the
3-dimensional momentum space problem. A
sphere is drawn around the origin of the p space
so that the center of the sphere coincides with the
origin. The projective origin is taken at the south
pole .S. Then a vector p, whose components are
bz, Py, 1s projected onto the sphere where it may
be described as (po; 8, ¢) using ordinary spherical
polar coordinates. From Fig. 1, we find that, for
this stereographic projection,

g

pobotans o= e (9)

If the rectangular coordinates of the point P
(po; 8,0) are x, vy, and z in a three-dimensional
Cartesian space with origin at the center of the
sphere, then we may define our variables so that

(x/Po)*+ (¥/P0)?+ (2/P0)* =1, (10)
(x/po=sinf cosp= 2popo/ (P2,
{y/Po=sin0 sing=2pup,/ (po*+p%, (1)
(2/po=cosf= (p*— %)/ (P +1?).

Let v be the angle spanned between P (pg; 8, 0)
and P’ (po; #,¢') on the surface of the sphere.
Then 2pqsiny/2 is the distance between P and
P’ and

Y\ rx—x\? sy—y\? yz—Z
(o) =)+ (50) +(50)
2 Po Po Do
_ Apdlp-p'
(bet-+17) (p+1")

(12)

The area element on the unit sphere is, by the

Pln:8,9)
<]
p plane
of B
P=Tp+Tp,
B =pcose
P, =p sin<¢
S
Fia. 1.
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third equation of (11),

dQ=sinfdod ¢

200 \? 200 \?
=< ) pdpd¢s( >d2p. (13)
pop? po+p?

Using (12) and (13) we can temporarily write
Eq. (8) as

Z/Po
<N+w%@=f¥

Ky

(p+p)i(p)de.  (14)

1
X[ -
2 sin(v/2)
This is a symmetric integral equation, so that
the function (pe2+p%) %o (p) may be found as an

eigenfunction of the kernel (2 siny/2)~%. Intro-
ducing a new function,?

Y(Q) =L(8)ipr I (P + %) (p), (13)
into Eq. (14), we obtain
Z/bo
s =", [ v, a9
27 2 sin{y/2)

where Q means the collection of variables 9, ¢.
It is a well-known result of the theory of
homogeneous symmetric integral equations that
if one can find an expansion of a kernel K (2,27
as Y A Q) f2(Q) then the eigenfunctions
and eigenvalues of the equation are f,(2) and
Ao It is not difficult to find such an expansion
for the kernel (2siny/2)"': The common ex-
pansion of the 3-dimensional Coulomb potential

i i 7’<l 2% ,

B - = Z — Ylm (Q> I/Zm).< (Q/); (17)
|1 7y oA
gives on the unit sphere

1 1 27
Q). ..t

ijl ryerimr 28in(y/2) I3

KoV () Vi ¥ (2).  (18)

2 The factor (+/8p¢?)™ is inserted to normalize the
function ¥ (&) to 1.

¥ See, for example, S. G. Mikhlin, Integral Equations
{Pergamon Press Inc., New York, 1957) (in translation).
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Thus, if

and

Z 2
(Z/p)m=I+1 o Em=—%< >,<zo>
43

then Eq. (16) is solved. This may be verified by
substitution,

Now, in solutions (19) and (20), the quantum
number m can take all the integral values from
—1I to [, so that there exist 2I+1 eigenfunctions
which belong to the energy state I: in other
words, the degeneracy of the state is 2I+1.
From (19) and (20) we see that the ground state
wavefunction is

1

Yoo= >
(4m)?

21)

and the first excited state wavefunctions are

either
3\t 3\t z
Y10=<—~> C059=<—> —
4 4n/ po

3y} .
Ylj:1=<*“) sinfetie;

8w

(22)

or any linear combinations, such as the real
functions:

1 3%
6[ YViu+Yioi] :<Z—> sinfl cos¢

1

—i 3\}
— [V — Y_1]=<~—> sinf sin ¢ (23
V2 i 4r )
()
4??‘ ?0’
3\t 3\! 3
Vie= <ﬁ> cosf = <——> —.
L 4z dx/ po
The momentum-space wavefunctions corre-

sponding to the Egs. of (21) and (23) are,
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respectively,
2\
on=(2) pieetors @y
’7T
and
(1 6\ F
’—[¢11+¢1—1:[=<—> PP+ 2pp .,
vz T
— 67} _
”\E[qﬁu—dn—l] :<;> P (b 491~
< (25)
'ZPOPyv
10 :<—> po(p’+pH)~t
K
(b —p).
The  position-space  wavefunctions  corre-

sponding to these functions in momentum space
or in Fock’s projective space may be obtained
by Fourier transformation [using the second
equation of (4)], or may be found directly as
solutions of the position space Schrédinger Eq.
(1). This is left as an exercise for the interested
reader.

For the 3-dimensional Kepler problem, Fock
obtained as the Schrédinger equation in his
projective momentum space on the 4-dimensional
hypersphere,

¢<m>=z/p°/ :

272 (2 siniw)?

Y (Q)ded. (26)

Here « is the angle analogous to v in (12) but
now on the 4-dimensional hypersphere, so that
2 sinfw is the “‘distance’” between two points
on the unit hypersphere spanned by the angle o;
Q, is the collection of angular variables «, 6, and
¢ (p—potana/2, 0 —08, ¢— ¢) for the 4-
dimensional hypersphere, and dQ. is the “‘area”
element on the hypersphere. He solved this
equation finding that the eigenfunctions are the
R4 spherical harmonics; that is,

Yt (00 = Vit () =4 01(2) Vi (Q), 27)

where

/ Yvnlm>l< (94) Y'n'l’m’ (94)d94:5nlm,n'l'm’ (28>
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(a)

(a”

Fic. 2. Photograph (a): |¢iw|<>| Yio!; photograph (b): i\-l@(¢11+¢1~1)
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(b)

|
L —

(b7

nd

Fut v

(or

| —1 4 .
iVZ—Z("j’”-‘b’—l)}H%ﬁE(Y”” Vi ); photographs (a’) and (b): same as (a) and (b), respectively,
I i i

except that the southern hemispheres are removed.

and
{(zx/2)% sin'a
Anla)= -
[m2(m2—1%) - (=) ]
dl+1
—— cosna, (29)
d{(cosa)!*!

and the eigenvalues are

(Z/po)wm=n or Enzm:—%(—Z*)Z. (30)

n

Since the quantum number / can take all the
integral values from 0 to n—1, and the quantum
number m from —[ to [ for each [ state, the
degeneracy of the energy state # is

n—1

2 Q2l+1)=n

=0

I1. DISCUSSION OF THE DEGENERACIES

The degeneracies in the 2- and 3-dimensional
Kepler problems arise because, in the 2-dimen-
sional problem the momentum space “potential”
has the symmetry of the 3-dimensional sphere,
while, in the 3-dimensional problem, the mo-
mentum space ‘potential” has the symmetry of
the 4-dimensional hypersphere. The way in
which functions which are obviously degenerate
on the sphere project into functions which are
obviously different on the plane is illustrated for
the first excited state wavefunctions of the 2-
dimensional problem in Fig. 2.

In Fig. 2, photographs (a) and (b) correspond
to the cases of the 2-dimensional first excited “‘s”’
state Y19, and the 2-dimensional first excited *‘p”’
state 278(Vy+Yiy) [or —i273(¥iu— Vi o).
Pictures (a) and (b) indicate that in the angular
space we can not distinguish one distribution on
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the sphere from another, since the distributions
differ only in orientation. On the other hand the
projected functions in the p plane are clearly
different. The ““s”” function has a circular node
at the equator of the sphere and the “p” function
has a linear node parallel to the x or y axis.
Photographs (a’) and (b’) indicate more clearly
how the lines on the spheres project into those
in the p planes. The lines drawn on the northern
hemisphere correspond to those in the ¢ plane
inside of the equator of the sphere whose radius
is P, and the lines on the southern hemisphere
correspond to those in the p plane outside of the
equator.

Exactly analgous relationships exist for the
ordinary hydrogen—atom problem.

APPENDIX: THE FOURIER TRANSFORMATION
OF THE 2-DIMENSIONAL COULOMBIC
POTENTIAL

If the potential V(r) is given, in 2-dimensional
position space, by

V(r) =——re,
7

(A1)

then its Fourier transform V’(p) in the 2-dimen-

TAI-ICHI SHIBUYA AND CARL E. WULFMAN

sional momentum space is obtained as follows:

e~ rd%y

V@) =@t [ e
7

= (2m)2(—Z) /0 " dreer

2T
X / e—wr oosidp,  (A2)
JO
Now
27 T
/ gipr coslf = 2/ cos(pr cost)do
0 0
=2xJo(pr).t (A3)
V@) = (2m)(~2) / e To(pr)dr
’ —Z
=5 (A4
2r (p2-tat)t
When a — 0, we have
Via)y=—Z/r (A5)
and the Fourier transform
Vi(p)= —Z/2xp. (A6)

4 G. N. Watson, Theory of Bessel Functions (Cambridge
University Press, London, 1958), p. 10.
5 Reference 4, p. 384.



