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Coherent States and the Forced Quantum Oscillator®

P. CARRUTHERSY
Laboratory of Nuclear Studies and Laboratory of Atomic and Solid-State Physics,
Cornell University, Ithaca, New York

M. M. Niero}
Laboratory of Nuclear Studies, Cornell Unisversity, Ithaca, New York
(Received 27 January 1965)

It is shown that the forced quantum oscillator subject to a transient classical force is easily
described in terms of the “coherent states” recently found useful in the description of light
from optical masers. The natural role these states play in understanding the notions of the
phase of a quantum oscillator and the transition to the classical limit is also explained. Very
simple derivations of the state vectors, energy transfer, and various transition probabilities are

given.

1. INTRODUCTION

ECENT papers in this journal have applied
powerful formal methods having their
origin in quantum field theory to the study of
the one-dimensional quantum mechanical oscil-
lator subject to a transient classical force.!?
Although this problem arises in many contexts®=®
and has been solved in many ways," % we wish to
present a discussion which is not only extremely
simple (on the level of a first year graduate
course in quantum mechanics), but also provides
insight into the concept of the phase of a quan-
tum oscillator and the classical limit. The
simplicity of our discussion rests on the use of
the ““coherent states” of an oscillator.” These
states, which go over into coherent classical
states for large quantum numbers, have recently
been recognized to be of great utility in the
quantum mechanical description of coherence
of light from optical masers.
In Sec. IT a summary of the harmonic oscillator
variables and other conventions required is given.
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Section 111 is largely a summary of the properties
of the coherent states, following Glauber.” In
Sec. IV the forced oscillator problem is formu-
lated in the Heisenberg picture in order to keep
closely to the classical interpretation of the
result. A simple Green’s function method is used
to construct the states of the system. In Sec.
V the transition probability between arbitrary
number states of the oscillator is computed in a
completely elementary way, in contrast to the
intricate methods used in Refs. 1 and 2.

II. HARMONIC OSCILLATOR IN
QUANTUM MECHANICS

The position x of a classical oscillator of mass
m, spring constant k subject to a uniform driving
force F(t) obeys Newton's equation of motion

mi+kx=F(1). (2.1}

Until Sec. IV we shall be concerned only with
the free oscillator, in which case F({)=0. The
solution of (2.1) is then

xw=14|cos(wt—¢), (2.2)

where w= (k/m)? is the (circular) frequency, |4 |
the amplitude and ¢ the phase angle of the
oscillator. The point to be observed here is that
the description of motion of a classical oscillator
requires the specification of both amplitude and
phase. It is not possible to ascribe such detailed
information to the quantum oscillator.

To discuss the quantum oscillator we write
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down the classical energy, or Hamiltonian,

2
H=—+1mu?,
2m

(2.3)

where p =mi is the momentum conjugate to x,
xp—px=[x,p =1k (2.4)

Let us work in the Heisenberg picture,® wherein
state vectors are constants in time, the operators
0(#) varying according to

ho () =[0(),H].
From Eqgs. (2.3)—(2.5) one finds

&) =p@)/m,
p(t) = —mex (1),

which when combined show that the harmonic
oscillator equation

() Fox(t) =0

is an operator identity satisfied by x(%).

In order to discuss the eigenvalue spectrum
and the relations among the eigenfunctions it is
convenient to introduce two new dynamical
variables, to be used in place of the old ones, p
and x. To discover these let us note that the
classical solution (2.2) can be written as

Xolassical = 3 A& 19 - F A Fetiel

(2.5)

(2.6)

(2.7)

(2.8)

where A =|Ale**, Here the asterisk denotes
complex conjugate. In analogy we invent the
time-independent dimensionless operators ¢ and
at (atis the Hermitian adjoint of @) by

x () =xo[ @e et F-ale?@t], (2.9)

where for convenience the length

o= (h/2mew)* (2.10)

has been factored out. x, turns out to be the
root-mean-square zero-point displacement. The
momentum operator is accordingly

p(t) = —imwxolae—iet —ateiet].  (2.11)

Alternatively, we can invert (2.10) and (2.11)
to obtain a definition of @ and ¢! in terms of x

8 Heisenberg picture operators are labeled explicitly by
the time variable #; otherwise the Schrddinger picture
operator is meant.
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and p
7
a(t) =———o £ —1 t
0= () —imex ()]
. (2.12)
-1
at () =————[p () +imawx ()],
0= [P0 +imer ()]
where a(t) and af(t) are given by
a(ty=ae ot al(t) =aleivt, (2.13)
One notes the basic commutation rule
[a,at]=1, (2.14)

as follows from (2.12) and (2.4). In addition to
(2.14) one has the trivial relations

[e,a]=[at,at]=0. (2.15)

The Hamiltonian can now be expressed in
the form

Hzékw(afa—i—ag,f) = (ma,—{—%)kw. (216)

Now we may verify from (2.14) and (2.5) that
(2.13) is valid. a(¢) and at(t) are normal mode
operators

tha(t) =[a (), H]=hwa(t), ¢(t)+w2a () =0. (2.17)

As everybody knows, the eigenvalues of (2.16)
are

E,=n+Hh n=0,1,2,..., (2.18)

so that the number operator
Nop=alta (2.19)
has eigenvalues 0, 1, 2, . . . . The orthonormal

eigenfunctions ¢, belonging to E, are given by

Yn= (@) "o, (2.20)

()
where the ground state ¥, of the oscillator is
defined by

ape=0. (2.21)

The af and ¢ operators raise or lower [with
the exception of (2.21)7] the degree of excitation
of the oscillator by #w

a/hﬁ*n = (71/"“ 1)%¢n+1,
a“l/n = (n)%¢n—17

(2.22)
(2.23)
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from which we obtain the matrix elements

<ml‘ﬂ E ny=(n+1)¥m ns1,

(mla|ny= (n)}m,n1. (2.24)

An oscillator excited to its #th quantum state
behaves just as a collection of # indistinguishable
Bose particles. One conventionally says that af
creates (o destroys) a quantum #w. Thus, the
a¢’s are called destruction, annihilation, or
absorption operators according to the author’s
taste. The aV's are accordingly called creation,
or emission operators.

Let us now verify the claim that x¢ defined in
Eq. (2.10) is the rms zero-point displacement, as
claimed. We have

(x2>oE<0lx2|0>=xo2<(a+af)2>o
on using the commutation rules and (2.21).

Howszaver, the mean position and momentum
vanish in any number eigenstate, regardless of
the size of u

(n|xiny=(nlp|n)=0, (2.26)
since ¥ and p are nondiagonal operators in this
so-called number representation in which we are
working. Thus, the number states are definitely
not the appropriate ones for a transition to the
classical limit. The physical reason for this
result is that the phase is completely undefined
once the excitation number is specified, leading
to the result (2.25). This “complementarity’ of
number and phase requires a careful discussion in
order to make precise the meaning of the idea of
the phase of a quantum oscillator.® The present
problem is closely related to the subtle interpreta-
tion required of the energy—time uncertainty
relation.

III. COHERENT STATES OF AN OSCILLATOR

What quantum mechanical states correspond
to the kinds of motion encountered in “‘classical”
circumstances? Besides having a high degree of
mean excitation, they must satisfy, at least to a

*L. Susskind and J. Glogower, Physics 1, 49 (1964)
have given a careful and mathematically precise discussion
of this question.
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good approximation,
(3.1)

As a matter of fact, we can find states satisfying
(3.1) exactly, regardless of the number of oscil-
lator quanta in the state.” Of course, from this
set of states only those having (¥|N,,|¥)>1
are necessary for the particular job of satisfying
the correspondence principle. However, we wish
to emphasize the utility of these states for a wide
variety of problems not necessarily involving
large quantum numbers.

Comparing Eq. (2.9) with (3.1) shows immed-
iately that if we can find states |o) which are
eigenfunctions of the annihilation operator with
complex eigenvalue «

(Wotass | £ (£) | Wotass) = const cos (wi— ),

ala)=ala), (3.2)
then the mean value of x(#) in these states
{a]|x(t) |a) =x(ae™ it +a*et N ala) (3.3)

does indeed agree with (3.1) where the phase
angle ¢ is given by

(3.4)

a=|ale.

The modulus of a is related to the mean
excitation of the oscillator by

(ala'ala)
N= =la|2 (3.5)
i ’

Thus, we can write the ergenvalue of o in the
unsurprising form (N)%*¢. However, the corre-
sponding decomposition of the operator a into
(Nop)® exp(i¢pop) where ¢, is a Hermitian
operator, is impossible.?

The states |a) can be constructed out of
number eigenstates

=3 |n)n]a)

(3.6)

From (3.2) and (2.24) we find the expansion
coefficient

(n]e)=

whence

—1]a >*...=

), (3.7)

(n)?

|y =(0]

3.8)
b TR (
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Normalizing |a) determines (0]a) up to an
arbitrary phase chosen as follows

ol

t=(ale)=(0]0)|*

n!

=exp(|a|?) [(0]a}|?,

0] a)= - (3.9
Finaly o) =exp(—4al?).

@) =exp(—4]al) 5 ——|m).  (3.10)
n=0(n!)2

The probability of finding the oscillator in
the nth level in the state |a) is

[ o [ 2n o—NNn

Pla)y=eloP— =

‘ ' (3.11)
n. /3

We have therefore derived the familiar Poisson
distribution which also expresses the photon
distribution in classical waves.

The expression (3.10) for |a) can be simplified
further by introducing (2.20)

0 (¢4 yn»
o) =ttt 5 2

n=0  p!

10)

=explaa’—3]a|?][0).  (3.12)

Thus, by applying a very simple operator to
the ground state, one generates a coherent state
la). These states are the well-known minimum
wave packets of a displaced harmonic-oscillator
ground. state, discussed very clearly in the book
by Henley and Thirring.’? In the Schrédinger
picture the states evolve in time according to

la())=e""*|a) =exp[aate™ —}|a[?]]0). (3.13)

This state describes a displaced ground-state
wavefunction which vibrates back and forth
with frequency « without any change of shape
or spreading.

The fact that |«) and |0) are both normalized
suggests that exp[aat —%|a|%] is equivalent to
a unitary operator. Such an operator is expected
to be of the form exp (ih) with # Hermitian. This
suggests that we replace (3.12) by

la)=4(a)|0),
1 E, M. Henley and W. Thirring, Elementary Quantum

Field Theory (McGraw-Hill Book Company, Inc., New
York, 1962), Chap. 2.

A (o) =exp(aat —a*e). (3.14)
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That this is correct follows from the identity!!:!?
expd expB=exp(4+B+31[4,B]), (3.15)

valid when 4 and B commute with their com-
mutator [4,B]. Specifically we get

exp (aatexp( —aa)

=exp[aat —a*e Jexp(3|al?), (3.16)

which establishes the equivalence of (3.12) and
(3.14).

The virtues of the operator 4 (o) are exhibited
by the following properties. First, we note the
relation

Ala)=A1(—a), (3.17)
by means of which the unitarity statement
At()A(a) =A(0)At(a) =1 (3.18)
takes the form?!?
A(—a)d(e)=A ()4 (—a)=1. (3.19)

From these relations we see that A (a) and
A(—a) are a kind of creation and annihilation
operator for the coherent states. In particular,

) =4()[0); A(-a)la)=10). (3.20)

The basic origin of these properties lies in
the fact that the 4 («) are displacement operators
of the normal coordinates @ and at. To show this
we need to use the identity

Lo, (ah)"]=n(at)", (3.21)
which gives us
[, exp(ea’) ] = 3 [a, (@)
n=0 .
=g exp(aa’). (3.22)

It follows that
[a,4 (a)]=e"H"[g,ex" Jeoe
=ad (o),

u This identity (Baker-Hausdorff) is proved in most
modern books on quantum mechanics, for instance, Ref. 12,

2 A, Messiah, Quantum Mechanics (North-Holland
Publishing Company, Amsterdam, 1964), Vol. 1, p. 442.

13 The mathematically inclined reader can note that the
unitary operators 4 (a) give a non-Abelian ray representa-
tion of the Abelian group of phase translations in the
variable « of the coherent states |a), where a may range
over the complex o plane. The multiplication law is
A (e2) A (1) =exp[E(aon® —0102*) 4 (e1-+ee). The unimod-
ular exponential factor vanishes only for real a1, a3 or for
the special case az= z=a;.
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8o that rearrangement yields

At(a)ad (o) =AM a) A {e)a+ AT (a)[a,4 (a)]

=a+a (3.23)
From this we find
ANa)atd (a) =at+a™*. (3.24)

Let us now prove that the (nonspreading)
states |o) give rise to the minimum uncertainty
product. First note that

(T)a’= ((a|x|a))?=x0’(a+a*)?
@ o=(al 2| ) =2¥a] (a-a1)* )
= (j)az_}’XQZ ;

(Ax)2=22—22=x2 = h/2mew.

(3.25)

Hence, the rms displacement is the same as
that in the ground state. A similar calculation
shows that

(Ap)?=mlwx® = jmhe, (3.26)

whence

ApAx =3 (3.27)

Thus, the states |a) are as ‘“‘classical as possible”
according to the principles of quantum mechan-
ics, in the sense of (3.27).

Next,let us consider questions of orthogonality
and completeness of the coherent states |a). As
these are eigenfunctions of a non-Hermitian
operator there is no guarantee that states with
differing phase are orthogonal. From Eq. (3.10)
we compute the inner product («|g):

) . (a*)mB"
(a]B)=exp[—3(le[>+[8]) ]2 ———(n|m)
mn (mlnl)
=exp(a™8—3|a?—%[B]%);
Ha|8)|?=exp(—a—B]%). (3.28)

Despite this lack of orthogonality, the |a) states
are complete. More precisely, we prove the
following identity?.*

1
- [ aaldta=1,

T J

(3.29)

where d?a=d Rea d Im « and the integration is
to be taken over the whole complex « plane.

1 E.C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).
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Transforming to polar coordinates a=re? and
using (3.10) to express (3.29) in terms of number
states converts Eq. (3.29) to

myn| 1 7 o
Z - _/ d1,8~727,m+n+1/ d@em(m«n)(?
mn (mn)tx /g 0
1 0
=Z|m)(m|~——/ drre=mtptm
m m! 0
=3 Im)m| =1. (3.30)

By means of Eq. (3.29) one can expand state
vectors and matrix elements in terms of the
coherent states. For more details on such
procedures, and in particular for a discussion of
special density matrices (coherent states, black-
body radiation, etc.) the papers by Glauber”
and Sudarshant4 should be consulted.

IV. THE FORCED QUANTUM OSCILLATOR

We now show that the coherent states have a
wider range of utility than simply to describe a
highly excited oscillator. We show that the
application of a ‘‘classical’”’ driving force (i.e.,
one which is unaffected by the motion of the
oscillator) generates coherent states regardless of
the size of the average excitation of the oscillator.

We wish to solve the “‘scattering” problem of a
quantum oscillator subject to a position in-
dependent classical force F(f). The interaction
energy of the oscillator with this force may be
taken to be!?

V=—xF()=—xo(a-+ah) Fz). (4.1)

For orientation let us first consider the trivial
problem of a constant force Fy Then the oscil-
lator is simply displaced to a different equilibrium

position. The Hamiltonian
H=hw(ata+3)—xo(a-+a) F@), (4.2)

specialized to F(f)=F,, can be diagonalized by
“completing the square”

. (xof7y)?
H= (b4 %) — —— (4.3)
7%
where the new normal coordinates b are
bzd“‘on()/hw. (4:4)
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The b operators obey [0,67]=1 and the eigen-
value spectrum is changed only by an over-all
downward shift by an amount —x¢®Fo®/hw
= — Fo?/2mw?®. The new ground state |0)" obeys

5|0)=0, or a|0)=(xeFo/hw)|0), (4.5)

so that in terms of the original coordinates and
ground state |0)

.?C()Fo

|0>’=A<h >|o>=exp[%°—§—°<a+—a)}{o>. (4.6)

w

The excited states of the displaced oscillator are
found by applying bf=ai—x,Fo/hw to (4.6).

Next, let us permit a time-dependent force to
act on the oscillator. For simplicity suppose
F (= »)=0, so that the oscillator is free at early
and late times. As we wish to emphasize the
similarities between the classical and quantum
aspects, we use the Heisenberg picture, in which
the displacement obeys the equation

#(t) +wix (t) = () /m. (4.7)

We solve (4.7) by means of a Green’s function
G(t—¢'), defined by the differential equation

d2
<——|—w02)G(t—t’) =w06 (t—t/) (48)
ds?

and supplemented by appropriate boundary
conditions. The delta function corresponds to an
impulsive force applied at ¢=1¢', and w, has been
included to make G(¢) dimensionless. Eq. (4.8)
is solved in the conventional way by expanding
G(t) in a Fourier intergral. The solutions needed
here are:

( 0 t <0,

Gr(t) = i . (4.9)
sinwot >0,
—Sil’lwot t<0,

Ga(l) ={ 150 (4.10)

We may now write down solutions of Eq. (4.7)
according to the alternative boundary conditions

x(t) - xin(t)r
x(t) - xout(t)l

{—> — oo,

. (4.11)

where xin and %.ut obey the free oscillator

CARRUTHERS AND M. M. NIETO

equation
Fintwoxin=0, Foutwoiour=0. (4.12)
The solutions clearly are
{
2() =2 0+— [ G-,
e (4.13)

1 =]
x(2) =x0ut(t)-|——/ Ga(t—t)F(at'
m =]

As a simple illustration let us find the state of
the oscillator after the force has ceased to act.
For this we need to express ¥ou; in terms of xi,

-

1
Kouws=Xin+— / GU—1)F()dt, (4.14)
m —o

G() =G4 () — Gr (1) =sinwet. (4.15)

Introducing the normal mode coordinates ¢ and
b by (cf. Eq. 2.9)

%in (£) = x0 (ae1ovtf-gleie0?),

Kout (£) =29 (™10t - pletwnt) (4.16)
one finds from (4.14) that
b=a+iF(wo)/ Cmhws)i =a+ia,, (4.17)
where F(w) is defined by
F(w) =/ et F(t)dt. (4.15)

Hence, the total effect of the transient force is
to displace the incoming normal mode a by an
amount depending on that Fourier coefficient
of F(f) with the fundamental frequency of the
oscillator. From the discussion of Sec. III we
know that a unitary operator S exists which
transforms @ to b

a — b=StaS (4.16)
and relates the in and out state vectors!®
Vin — Vous =S¥, (4.17)

(The operator S is often called the .S matrix.)

18 For a discussion of the significance of these (Heisen-
berg) state vectors and the .S matrix, see Ref. 10, Chaps.
8-10, or Ref. 2. It is important to remember that Wou; and
¥y, are constant state vectors; they are not Y (£ ) as
in the interaction picture.
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Comparing Eqs. (3.23) and (4.16) indicates that

{ at Fleo)+a F¥(wo)
exp 14
{ (2mbiesn)

(4.18)

An interesting alternate way of writing (4.18)
results on expressing the argument of the expo-
nential as a time integral

—

(4

Pous =€xXp i—
(2mﬁwg)%

X/ (a*e"“oi—kae‘wof)F(t)dt]\Ifin;

)

Wous = expli-_h—¢ [ xin(£) F(l)dt]‘lfm.

™)

(4.19)

These formulas express ¥ou in terms of the
“incoming’’ variables ¢ and at. Using (4.16) one
can easily verify that S has the same form
expressed in terms of b and bt as it does in terms
of ¢ and at.

After the force has ceased, the motion of the
svstem is described by x,.4, and measurements on
the oscillator are appropriately described in
terms of ¥,y In order to find how often a given
state ¥,us,, appears, we have to expand the state
vector ¥iy,,, (which contains information about
the preparation of the state p of the oscillator)
in terms of the ¥oy,,. Using the unitarity of S
and labeling the states in (4.17) appropriately
we have

\I’in,y = Z \Pout,y<\1/out,y ! SI \I/uut,/t> = Z Sv;t\Pout,Vr

SV“E<\I’()U(;,V I S g \Ilout,,u> :<\Ilin,v E S[ \Irin,ﬂ>' (420)
In Eq. (4.20) the completeness of the ¥, was
utilized. Eq. (4.17) was used again to establish
the last equality.

The explicit form of the scattering matrix
Eq. (4.18) completes the solution of the problem.

V. TRANSITION PROBABILITIES BETWEEN
NUMBER EIGENSTATES

An interesting and important special case of
Eq. (4.20) occurs when the g, v labels refer to
number states. For example, the model of Sec.
IV can with little effort be extended to describe
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the emission of photons by a classical current
source.®” Although it is the coherent states
which are radiated by such a source, one often
uses photon counters in conducting interesting
experiments on the emitted radiation.

If the oscillator was initially in the number
state », then the probability amplitude that it is
finally in the number state m is

Sma={m|S|n)={(m|A (Gas) | n), 5.1

[see Eq. (4.18)7]. In the simplest case of an
oscillator initially in its ground state, the result
follows directly from the analysis of Sec. II
[see Eqs. (3.10) and (3.14)]

(1:0[0) "
ml)t

The probability of the transition 0-—m is
therefore Poisson

Sm():(m!i‘a[)): exp '—%anl2)- (52)

0lol2m , R
Pono=|Smo|*= exp(—|ao|?), (5.3)

with a peak at N=|ag|?
N=|a¢|?=| F(we) |2/ (2mhw,). (5.4

Hence, the most probable energy transferred to
the oscillator,

AE = Nhwo=| F(wo) |%/2m, (5.5)
also coincides with the average energy transfer

S P oo (mifiws) = Niso,

m=0

(5.6)

as well as with the expression obtained for a
classical oscillator initially at rest.l.1¢

The general expression (5.1) for S,.. can also
be evaluated explicitly in terms of known func-
tions, as was shown by Fuller ¢t a/.' Our method
is considerably shorter than theirs. First, we use

Eq. (2.20) to write (in the following m>n)
m)iS = {(m| At (—1ao) (aD)"|0).  (5.7)

Here we have written A{(a)=A%(—a). This
allows us to exploit Eq. (3.24) and write the

16 Note that in lowest order perturbation theory the
energy transfer, 7ws]S1e®{? is also given by Eg. (5.5)
(Here S3o® is the lowest order contribution to Sie).
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right-hand side of (5.7) in the form
(m| (A1(—dao)atd (—iao)) A1 (—ia) | 0)
=(m| (at+iao*)"4 (Gay) |0). (5.8)
The binomial theorem is now employed to obtain
n (nl)?

Spp=3 ——
o (n—7)!j!

J

(fa®) ™7

I

X(m| (a*)’4 (i) [0).  (5.9)

Combining Eq. (3.21) with Eq. (2.20), one
easily shows that

[\¢
<a)flm>=((—~) m—j), mj (5.10)

m— 7)!

so that the matrix element in Eq. (5.9) is simply
Swm—i,0o. Inserting the explicit form of Sau—j
from Eq. (5.2) gives

S = (1) tg—H00l? () m=n
(— ||

X . (5.11)
=0 R (n— k) (mt-k—n)!

2

I

In obtaining the latter form the substitution

E=n—j has been made. It only remains to

recognize the definition of the associated Laguerre
polynomials'?

L 3 (! 5.12

= () k§°k!(n—k)1(m—n+k)! (-12)

to write (5.11) in the succinct form
Sun= (nl/m) et (jog)m=n
XLn™ (|0 l?), (5.13)

where ag is F(wo)/ (2mhwo)t (see Eq. 4.17). One
thus obtains for the transition probability (m > #)

m>n,

n!
Pmn — I Smn [ 2 =__e—a:xm——n[me-—-n(x):|2;
m!

x = [aolz. (5.14)

17 Higher Transcendental Functions, edited by A. Erdelyi
(McGraw-Hill Book Company, Inc., New York, 1953), Vol.
11, p. 188.
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If m <n the sum in Eq. (5.9) actually cuts off at
j=m. Repeating the calculation shows that

S = (m/n}) e Ho0 iag*) "Ly || 2),

m<n, (5.15)

so that P,. can be obtained from (5.14) by
interchanging m and #.

In Ref. 1 it is shown by direct summation that
the mean energy transferred to an oscillator
initially in an arbitrary number state » is the
same as for #=0. This result, too, can be ob-
tained in a completely elementary manner. The
energy shift is simply (the state ¥;, is fixed)

AE= (‘I’in { (Hout —Hin) |\Ilin>

:hw[laoi2+7;<<‘I’1n|a1']‘I’in>ao—C.C.)], (516)

using Eq. (4.17) to express & in terms of a. For
number states the term in parentheses vanishes
and (5.16) simplifies to

AE=hw|ao|2=|F(wo)]2/2m. (517)

The vanishing of the last terms in (5.16) for the
number states can be regarded as due to the
complete uncertainty in the phase of such states.
If ¥, is a coherent state with phase parameter
8, for instance, then a term 2%w Im (Bas*) has to
be added to (5.17).

Finally, we mention another way that coherent
states can be used to illuminate the concept of
phase of a quantum mechanical oscillator. Using
the operators appropriate? to describe the phase
variable ¢ one can introduce a suitable ‘“‘number-
phase” uncertainty relation which reduces to the
familiar ANA¢>1 in the classical limit but is still
meaningful for small quantum numbers. The
coherent states are found to be very good
minimum-uncertainty-product states. For fur-
ther details the reader is referred to Ref. 18.

18 P, Carruthers and M. M. Nieto, Phys. Rev. Letters
14, 387 (1965).



