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S-Matrix Solution for the Forced Harmonic Oscillator*

R. W. FuLLer, 8. M. Harris, axp E. Leo Sraceiet
Depariment of Physics, Columbia University, New York, New York
(Received 8 February 1963)

The exact solution for a forced, undamped quantum harmonic oscillator is obtained by
S-matrix techniques. The force F(i) is assumed to vanish at {= «. The only restriction
is that the Fourier transform of F(f) must exist. The transition probabilities are obtained in
closed form in terms of Laguerre polynomials. The mean energy transfer to the oscillator is
found to be independent of the initial state and is in agreement with the classical result for
an oscillator originally at rest. This problem provides a good example of field theoretical proce-
dures in an elementary context. Therefore, all field theoretical concepts are carefully defined
and explained as they are introduced in order that the discussion may be self-contained.

I. INTRODUCTION

E consider the forced harmonic oscillator
as an example for reviewing and demon-
strating field theory technigues.! This problem
bears a close analogy to the scattering situation
for which the S-matrix formalism is commonly
applied. At very early times (f— — o) the
system—i.e., the unperturbed oscillator—is in
one of an infinite number of possible noninteract-
ing (‘“free particle’”) states. The oscillator is
then subjected to an interaction— the driving
force F(t)—which cuts off at very late times
{(# — 4 o). The system has then returned to one
of the states possible for an unforced oscillator,
and the question is asked : what is the probability
that the interaction has induced a transition from
an unperturbed oscillator state |B) to a final
state | 7)] ? Modern field theory answers such
questions by constructing a scattering operator
S (see Sec. II1) such that [(j|.S|k)|? gives the
probability of a & — j transition.
In field theory, practical calculations are done
with a series expansion for the S matrix [Eq.
(20)7, only a few terms of which are kept in the
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Energy Commission.
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t An orthodox quantum-mechanical solution to this
problem has been obtained by E. H. Kerner, Can. J. Phys.
36, 371 (1958). He obtains the exact wavefunctions after
transforming the Schrodinger equation into a separable
form. His treatment furnishes considerable insight into
the similarities between the classical and quantum-
mechanical oscillators.

2 See, for example, A. 1. Akhiezer and V. B. Berestetsky,
“Quantum Electrodynamics,” AEC-tr-2876, Sec. 32, and
reterences therein. This reference may also be consulted
for more detailed and general discussions of the field
theoretical concepts which we use.

usual perturbation approach. The convergence
of this series in most cases remaing an open
question. Even in perturbation theory of con-
ventional quantum mechanics, the convergence
of a calculation carried to any desired order is
not well established.

We apply to the forced oscillator each step of a
modern field theoretical perturbation calculation
—introduction of the interaction representation
and the .S matrix (Sec. I1I); second-quantization
formalism (IV); reordering in terms of “‘normal
products” (V); and, finally, evaluation of the
S matrix between unperturbed states (VI).
It turns out that all these steps are nicely
illustrated by the forced oscillator problem.
Moreover, the perturbation expansion can be
summed to all orders for an arbitrary force,
thereby allowing a complete solution.

Since this specialized problem is primarily of
interest for the insight it offers into general
methods, it seems worthwhile to display our
work as an illustrative example for students of
field theory. The forced oscillator initially in the
ground state is in effect studied by field theory
methods in investigations of the infrared diver-
gence in quantum-electrodynamics.? However,
these discussions are by no means self-contained,
but assume knowledge of much material with
which an inexperienced (or forgetful) reader may
feel uncomfortable. The discussion here proceeds
from first principles to final results without
omitting useful review material,

II. THE CLASSICAL OSCILLATOR

We consider an undamped, one-dimensional
harmonic oscillator acted upon by a spatially
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uniform (no x dependence) external force F(f).
Throughout this paper we limit ourselves to
force functions F(¢) for which the Fourier trans-
form, Eq. (7), exists. Thus F(f) vanishes in the
limits £— £ ; we may regard the system
initially and finally as an unperturbed oscillator.
The equation of motion is given by

Etwle=(1/m)F(t), 1

where m is the mass and « is the natural fre-
quency of the oscillator. We may rewrite (1) as

E—iwz= (1/m)F(t), (2)

2 =F+1wx. (3)

where

Let us now assume that F(¢) is nonzero only
for an interval 7, <t< 7Ty and that the oscillator
is originally at rest (x=&=2z=0 for (<7T}).
Multiplying both sides of (2) by exp(—iwt) and
integrating, we obtain

/ 2 (2—iwz)ewidt= (l/m)/ 2 Ftyewotdt. (4)

T

Integration by parts of the term on the left gives
T

A(Tgeen=/m) [ FOess, )
Ty

where we have used the boundary condition that
% vanishes for 1< T, Since F(¢) vanishes cutside
the range of integration in (5), we may extend
the limits of integration to = «. Then (5) may
be written as

2(To)e "= (1/m) f (), (6)

where f(w) is the Fourier transform of F(¢)
evaluated at the natural frequency of the
oscillator,

o0

= | F)eiotdt.

—

(7)

For times outside the interval T:<i<T,, the
energy E of the oscillator is given by

E=(mi?/2)+ (mw?/2) = (m/2)|z|%.  (8)

Since the oscillator initially has zero energy,
the energy AE transferred to the oscillator by
F() is E(T5), or from (6)

AE=(1/2m)| f(w)|*. (9)
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Energy transfer only occurs at the resonant
frequency o, as is seen by observing that only
the wth component of the Fourier transform of
F(#) enters in (9). The result expressed in (9)
remains valid whenever F(f) possesses a Fourier
transform, even if the force does not wvanish
identically for ¢ outside the time interval T
to Tz.

III. REVIEW OF THE INTERACTION
REPRESENTATION AND THE
THE S MATRIX

Before turning specifically to a study of the
quantum oscillator, we briefly review some
aspects of the interaction representation which
lead to the “S-matrix” formalism. Schrédinger’s
time-dependent equation for a system character-
ized by a Hamiltonian H, with no explicit time
dependence and acted on by an external force
obtained from a potential V,(x,t)? is

(Ho+ Vo) [ (x,0)s=17(3/08) [$ (x,8)).. (10)

We introduce the interaction representation
by defining
]"/,>I:EiHot/hl¢.>s_

On substitution of (11) into (10) we obtain

(11)

Vi) [ @) r=1h(8/00) [ (1)1, (12)
where V;(¢) is defined by the relation
Vl(t) =6iH0t/h Vsa)e—iHot/h‘ (13)

Equation (12) can be formally integrated to give
t

Y= (Dhifn | @O (04
T

A formal solution of (14) is given by iteration:

i¢<¢>>z={1+<—z‘/m f Vi) + (—ifh)?

t 151
% / it f Vi) Vilta)+ -
T T

X[ (T))r.  (15)

3For convenience we suppress explicit reference to
spatial dependence. The subscript s designates operators
and state vectors in the Schriodinger representation. We
use a mixed notation for the state functions to emphasize
the applicability of the following discussion both to
“ordinary’’ quantum mechanics and to second-quantized
formulations.
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Unfortunately, the integration variables in (13)
appear unsymmetrically. It would be more
convenient if the upper limits for all integrations
were the same. This alteration in (15) can be
accomplished by the introduction of a “time-
ordered product.”

Let us define the time-ordering operator T°
(first introduced by Dyson) as that operator
which rearranges a product of time-dependent
operators such that functions of later times
always stand to the left of functions of earlier
times. Thus, if 4 (#1), B({¢2), and C(#;) are time-
dependent operators, we obtain

T[4 () B()C ()]
=A{)B (L) C(ts) when  £>4>1,
Clt)B(t)A (1) when £>6>4, (16)
B{)A(t)C(ts) when  t,>8>1s,

and so on, where three other combinations are
possible. Clearly, products of commuting op-
erators are not affected by the time ordering
operation.

We are now able to see the validity of the
following identity:

H i1 tn—1
T T T
1 ¢ 2 ¢
- dtl/ dtZ---[ i,
nlJr T 7

XTLVi) -+ Vita)] (A7)
First of all, we note that the factors of Vy
appearing on the left side of (17) are already
time ordered because of the different upper
limits of integration. All times appearing on the
right side may be permuted arbitrarily, because
of the definition of the 7" product, without
changing the value of the integral. Since there
are n! possible permutations of the factors in
the T product, the given integral is #! times the
contribution of an integration over any one
specific time ordering of the integrand.

Using (17) we may then write (15) in the
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desired form,

vOu={ % (_,Z-/Wni!/; dt/ "

XITTVi(t)--- Vl(tn)]} W (Thr. (18)

In scattering theory, we usually begin with the
system in an eigenstate of Ho at very early
times (t— — ), when the particle to be
scattered has not yet come within range of the
force, or before the interaction V; has been
“turned on.” Likewise as { becomes large the
system again goes into an eigenstate of Hy. For
such a physical situation the interaction represen-
tation state function given by (11) may be
expected to be well-defined at /= =4 «, Hence we
can define the ‘S matrix” as that operator which
transforms the state at -« into the state at

+ oo

W (+=)r=S[¢(~ o)), (19)
where from (18)
® 1~ *
S= 3 (—i/ﬁ)”v/ dt1--‘[ dt s,
=0 nlJ -0
XTIV - Vi)l (20)

The transition amplitude from a state [, (— o))
to another state |¥,(+ «)) is given by

Sun=m(+ ) [S[¥a(—w))  (21)

(where an integration over space variables is
implied by the bracket notation). What is
commonly called the “S matrix” should more
properly be called the ‘S operator,” which then
gives rise to the matrix element of {21).

Usually the series expansion of S given by
(20) is useful in calculations only when V;is a
small perturbation. Then only the lowest-order
term with a nonvanishing contribution to (21)
need be evaluated. Moreover, difficulties in
principle often arise in field theory when higher-
order contributions to (21) are found to diverge.
When divergences occur, meaningful results can
still be obtained in some theories by redefining
the masses and coupling constants and introduc-
ing “renormalization constants.” Theories with
divergences that cannot be “defined away” or
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renormalized (e.g., four Fermion beta-decay
theory) may nonetheless yield in lowest-order
numbers in striking agreement with experiment,
but perhaps these results should be viewed more
as the fruits of revelation than of reason. None of
these difficulties arise, however, in our example
of the harmonic oscillator in an external field, like
that of Sec. I1. No higher-order divergences arise,
and we are able to sum the series of (20) without
any restriction on the magnitude of the perturba-
tion. Thus an exact solution is obtained to the
quantum mechanical analog of the problem
treated classically in Sec. II.

IV. THE QUANTUM OSCILLATOR

The Hamiltonian H, for the unperturbed
harmonic oscillator of Sec. Il is given in the
Schrédinger representation by

Ho= (p2/2m) +imo’s?, (22)
where
p=(#/7)(d/dx). (23)
If the operators @ and a' are defined by
a= (xmwtip) 2mwh)—* (24a)
and
al = (xmw—1ip) 2mwh) 1, (24b)
then we can rewrite Hy as
Hy=hw(ata+1%). (25)
From (23) and (24), we have
[G,CZT] =1. (26)

We denote by |#,), the nth solution to the

harmonic oscillator wave equation,
Ho|n,t)s=1%(0/0t) | n,)s.

In terms of elementary functions, one finds

[n,8)s = (a/732™n ) H . (oxx)

Xexp (—$akx?)e—ilntdet - (27)
where H, is the nth-order Hermite polynomial,
and
‘ o =maw/h.

It is convenient to make the time dependence
of |n,t), explicit by writing
[n0)s= et p), (28)

where |#) is the solution of the (time-independ-
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ent) equation
Hy|ny=hw(n+1)|n). 29

From (25), (26), and (28) one obtains the
relations

at|n)y=(n+1)¥n+1),

(@) 0y = (n1)*|n), (30)
aln)y=(n)n—1),
a|0)=0, (31)

which allow the interpretation of ot and a as
creation and destruction operators, respectively.
Hence, the formalism we are using has the char-
acteristics of a simple case of ‘‘second quantiza-
tion” as used in the quantum theory of the
photon field. We want to re-emphasize, however,
that our state vectors |#) are in fact elementary
functions which are ‘‘raised” or ‘lowered” by
the algebraic and differential operations given in
Egs. (23), (24), (30), and (31). Thus, all that
follows could easily be written in terms of
Hermite polynomials and weighting functions in
x space. However, insight as well as elegance
would be lost by such a procedure as would our
analogy to field theory calculations.

We now seek the solutions of (10) when H,
is given by (25) and V; is given by

Vi=—xF ()= —(a+a%) (V2a)7 F (1),

which classically corresponds to the introduction
of the force F(f) acting on the oscillator.

In the interaction representation, the states
|7,5)r of the unperturbed oscillator are given
according to (11) and (28) by

(32)

] n»t>1' = I n)
To find V7 we need to evaluate ar(f), defined by
ar(f) = ¢gifot/hgeiHot/s,
At t=0, ar(t) =a, and

(dar(t)/dt) = (i/R)eiHet/ [ Hy g Je—iHotl
= —iwar(l),

using (25) and (26). Hence we have
ar(t) =ae~it,
From (13) and (32), we then obtain
Vity=—F(t) (VZa)"H{ae~itFatei=?), (33)
We now calculate the probability that an
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oscillator that was in the ground state before the
force F(t) is applied is in the jth excited state
after application of the force has ceased. We
require the matrix element?

Gl ()

when {¢{— ®))=0). Using the definition of the
S matrix [ Eq. (19)] and its expansion in terms
of Vr [Eq. (20)], we obtain

E)

® A [ ®
11.510)= »~——~—</ dtl'--/ dtn
1510 "2;0 nl(V2ah)» ]l e s
XT{ fI F(t) (ae“i”"c+afei‘°‘k)}l0>. (34)
F=1 !

It is now convenient to apply Wick’s reordering
theorem?® to evaluate the matrix element of the
T product in (34).

V. THE REORDERING THEOREM

For brevity, let (ee—wt--afe™i*) be denoted
simply by its time index k. The product of
an arbitrary number of such factors is then
denoted by kl---n. We define the normal product
N{kl---n) by the following prescription: Regard
g and ' as though they were commuting
operators and then form N(k/---#n) by multiply-
ing the factors kl- - -n, always writing each ¢ to
the right of every af. Thus

El=qle %ttt L (a’r)'zeinkHl)
) _ f e
+aTaezw(tk ”/—i—aaTeW(” tk)’
]\](kl) :a2e~iw(t/c+tl> + (aT)Zeiw(tk-i-kz)
J-afaeiv =11 4-gigeie (timte)

Normal products are invariant under permuta-
tion of indices. A contraction of two factors
denoted here by C(&l) is defined as the difference
between the 7" and N products,

C(kD=T (kl) — N (kD).

The contraction is also invariant under inter-
change of the two indices. It is easily seen in our
case that

C(Rl) ==l (35)

¢ The notation {j| indicates the Hermitian conjugate of
| 7, while the combined bracket notation (j|k} implies
integration over all space coordinates., Hence the ortho-
normality condition is given by (j|k) =25

5 G, C. Wick, Phys. Rev. 80, 268 (1950).
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In general, the contraction is always a “C
number” (rather than an operator). Wick’s
reordering theorem as applied here states that
the time-ordered product T(1,2---n) may be
expanded as follows®:

T(1,2n)
=3"{C(1,2)C(3,4) - - Cln—1,n)+C(1,2)
(p)

XC(B3A4) - Cn—3,n—2)Nn—1,n)+- -

+N({1,2---n)} (evenm), (36)

71,2 %)
=Y {C(1,2)CBA4) - Cln—2, n—1)N(n)
(»)

+C(1,2)C34) - - Cln—4, n—3)
XNn—=2,n—1,n)+---

+N({1,2---n)}  (odd ).

The sum 3_" is to be taken over all permuta-
tions of 1, 2---n; the prime indicates that only
the terms of each succeeding permutation which
are not identically equivalent to terms already.
present are to be retained. Thus permutations
which only interchange indices within contrac-
tion symbols and/or within normal products are
not included. Also excluded are permutations
which change only the order in which the con-
tractions are written.

For two factors the ordering theorem is obvious
by definition of C(1,2). For three factors, the
expansion of 7°(1,2,3) is given by (36) as

7(1,2,3)=C(1,2)N(3)+C(1,3)N(2)
+C(2,3)N(1)+N(1,2,3).

That the above equation holds may be easily
checked by evaluating both sides for the time
order 13> iy>1;. Wick® gives a general proof for »
factors; the difficulties are largely notational. In
the case of the forced oscillator here considered,
in which the F(#;)’s are not operators, it may in
fact be shown” that the time ordering can be
omitted from (34) and use of Wick’s theorem may
thus be avoided. We prefer to illustrate the con-
venience of the reordering theorem, since its use

6 Since the factors F(i) in (34) are ¢ numbers, they may
be factored out of the T product and need not concern us
in this section.

7 R. J. Glauber, Phys. Rev. 84, 395 (1951).
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is more typical in the general field theoretical
calculations we desire to parallel.

VI. EVALUATION OF THE TRANSITION
PROBABILITY

The choice of the ground state, |0), as our
initial state makes the application of Wick’s
theorem to (34) particularly simple. Here, we
discuss some of the steps which lead from (34)
and (36) to the following result:

® in ©
GISIO=G) 5 fdt
) @ty W20 1

X/_w dtn{ ;E:F(tk)}c(l’”' .

XCln—j—1, n— jeetsis

Xeiwtn=itr. . giwtn K . (37)

where
Ko j=nl/20=D1 (n— 4)/2]17\

We observe that:

(38)

(a) The only terms from (36) with nonvanish-
ing matrix elements between {j| and |0) are
those containing a normal product of j factors,
since no other normal-ordered terms can raise
the state |0) to the state |7). Hence the first
7—1 terms of the sum in (34) must vanish. The
factor (j!)* arises from the relation (a)?]0)
= (i 7 [Eq. B0)J.

(b) In view of (a), terms from the Wick
expansion for #> j can contribute to (34) only
if n— j factors have been contracted out. Hence
the sum is restricted to #— j even.

(c) From each contributing normal product
there arise j factors of e™%, which are the
coefficients of (a')’.

(d) The factor K,; accounts for the possible
permutations in the Wick expansion. Since only
inequivalent terms appear in the permutation
sum of (36), the n! possible orderings of the
dummy integration variables must be divided by
(1) 7!, the number of equivalent permutations of
the normal product of jfactorsof (afe™!4-ae~?);
(2) 2(—»72 the number of ways of interchang-
ing indices within (#— j)/2 contractions; (3)
[(n—7)/2]!, the number of permutations which
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change only the order in which the (m—j)/2
contractions appear.

Some obvious cancellations and a change of
summation index to m= (n—7)/2 lead to

i1810)=———[/*(w)]
IO it
2D DT
AR AT
where

D= dtl/ dtz@‘iwltl—mlF(tﬁF(tz). (4:0)

We have used (7) and expression (35) for the
contraction to obtain concise expressions for the
time integrations. Eq. (39) vields at once

Glsioy

S——— YT D/4ah?
GGyl @Y esp(=D/tarh),

(41)

The probability that the oscillator is in the final
state j is denoted by P;. On observing that

D+D*=2]{f(w)|?
we obtain from (41)

Piu= 11 S10)|7= | £(@) |9/ (a%92) 51
Xexp[ — | f(w) |2/2a?h%].

Transitions from the ground state involve only
one process—absorption. Since unperturbed os-
cillator levels are evenly spaced, the 0 — j transi-
tion may be viewed as an absorption of j quanta,
each of energy #w. If consecutive absorptions are
statistically independent, a Poisson distribution
is to be expected. The Poisson character of (42)
is emphasized if it is rewritten as

Pjo=(x7/jl)e =,

(42)

(42a)
where

x=| F(w) |2/ 2002, (42b)

The mean energy transfer to the quantum
oscillator is given by

AE=hw T jPjo=|f(w)|*/2m, (43)

in agreement with the classical result (9). Using
(42b) and (43), we see that AE/hw=1x, so that x
may be identified with the mean number of
quanta absorbed by the oscillator.
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The matrix element {(j|S|k) for k=0 can be
found by using (20) for the S matrix and the
procedure of Sec. V1. (See Appendix.) The situa-
tion is more complicated, since terms involving
factors (ah)i ¥ Dgl (in the case j2 k) contribute
to the matrix element for all [ <k for the nth term
of the S-matrix series (when # 2 k7). Thus the
final result, corresponding to (42) is given by a
(finite) series arising from the sum over /. From
a detailed consideration, we obtain for j >k

1[G S1k) 2= (Rl/ j)a7be [ Ly *(x) I,

where x is given by (42b), and L;"™*(x) is the
associated Laguerre polynomial.® When &> j, we
must interchange j and & on the right-hand side
of the above equation for [(j|.S|k)|2

By use of identities in reference 8, it can be
verified that the sum of transitions probabilities
over all jis unity. Furthermore, the mean energy
transfer can be calculated. It is found to be
independent of the initial state and is given by
(43).

We have not found it necessary to introduce
explicitly configuration space wavefunctions
(appropriately weighted Hermite polynomials)
or to perform spatial integrations in order to
calculate matrix elements. Our discussion is thus
an extension of the well-known algebraic operator
techniques that lead to a simple solution of the
unperturbed oscillator.
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APPENDIX. TRANSITIONS FROM EXCITED
STATES

Once the analysis of (34) by the methods of
Sec. VI is understood, the calculation of {(;{S|#)
for arbitrary j and k becomes straightforward,
though careful attention must be paid to the
details. Our discussion outlines the procedure
without attempting to cover every step. It may,
therefore, prove difficult for the reader to follow
the paragraphs leading to (52) without some
work on his own.

& Bateman Manuscript Project, Higher Transcendental

Functions (McGraw-Hill Book Company, Inc., New York,
1953), Vol. 2, Sec. 10.12.
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When |0} is replaced by |k) in (34) and the
expansion (36) is introduced, we obtain for the
case j 2 k the double series:

ol ®

% iu
I r_ dii- - - din
<] \ l > 7ZZ=O (\/?aﬁ) "nI /—w ' '/_w

1
X ¥ C1,2) - COom—21—1, 2m—2I)
1=0

XF(th_2l+l)eiwt2m—2l+l. - F(tn_z)
X8iwtn~lF(tn_z+1)e~iw!n—z+1

X E(t)e [ (kDY (k=D DK n.  (44)

The prime on the summation indicates that only
terms for which n—(j—%) is nonnegative and
even are kept. We further define

m={(n—j+k)/2,
[=minimum (k,m),

Kpm=nll(m—D 12 (j—k+20) 1]
j—k+21
><<] z > 47

The factor (kljD¥/{(k—[)! arises according to
(30) and (31) from the terms

(ah)=*=Dal k) = (k)H(GDY (k=1 5),

which are factors in the only terms of the Wick
expansion of S|k) that do not vanish when
bracketed with (j|. The factor Kj;.; is obtained
from the same kind of analysis that led to (38),
except for the binomial coefficient, which appears
as the coefficient of {a")™%~Yg!in the expansion
of (ateivtqeist)i-itaL,

It is now convenient to select m as the summa-
tion index instead of # and to introduce f(w) and
D by (7), (35), and (40), thereby obtaining

(7l S1&)

Gy e (=D
(VIah)*  mco 2a2hE)™

(45)
(46)

(48)

X z DL ()5 [ () T

X[ (m—D 127 1=+ (k=1L (49)
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We now interchange summations, observing that

rr=% %

m==0 I==0 =0 m=l

(50)

(=3

A shift of index, m'=m—I, then permits one
summation to be carried out, and leads readily
to the result,

(71S1k) = (k17D f* (w) 7 exp(—D/4a’h?)

k(=1
X (VZah)t=i 3
1=0 (2a2h2)!
| f{w)]?
=D T =D

[i- 1)
The transition probability for j2 £ is then given
by
Pp=[{j|S|k)|*=R!jlxi e

(—x)? 2

y 5
| Ll

where
=| fw) |2/ 2a2h%.

For j<k it can be checked that (52) holds after
the interchange of j and k on the right side. Pjs
is conveniently given in terms of Laguerre
polynomials by

(53)

Pip=(kl/jhxm*e[ L7 x) ], 2k (S4a)
= (jlI/RDat~de=2[L*9(x) ], j<k, (54b)
where
Ly (x) = (e"x=2/nl) (d"/dx) (e~ =)
n fmta\(—x)"
“Z() e

Obtaining the mean energy transfer,

AEkzz P;k(j'—k)hw,
i

from (54) is facilitated by use of the identity®

[ A :)C”Lk l’ k+2l(2x)

Lo (x)]“’—glg Gekthul 36)

FULLER, HARRIS,

AND SLAGGIE
Using (56) in (54) we obtain

» 2 leLk_lm+2l(2x)
AE o= 3 e=mxm S —

m=0 =0 (m-DY!
k k—m x”L;c_m_l’”“l(Zx)
— > ermx™ Y ., (57)
m=1 1=0 (m—+1) 1!

by setting m=j—Fk in (54a) and m=k—7j in
(54b). By a further change of indices:
I —il+m
m-— —m,

the second summation may be combined with
the first to give

% " mxm+2lLkhl'm+2l<2x)

ARe/hu= & N(l4m)!

=0 m=—1

(58)

A further shift of index, m — m+1, gives

i (m l)xmx’L;, ;’"H(Zx)
- 3 ,

1=0 m=0 llm!

which by (55) may be written

Berfhomee s 3 — 20
AFEe® =¥ -
/e 1=0 m=0 [!m 127t (k—1)!
dk—-l
X———(e""ufm), (59)
duF—t (
where u =2x.
On observing that
w (m—0){u/2)™
R LA,
m=0 mi
we obtain from (59)
k 2—1——1 dk~l
AE e/ hw= e—ulzuk-ﬂ)
e EOZI(k—Z)!duk—l<
Py 2—1 d—1
- e‘“”u’“). (60)

Z (U= 1)1 (k1) dur=
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By use of the binomial expansion and a shift of This expression is simple to evaluate because

index in the second sum, it is easy to obtain

d
(1 +*) (e7%x*) = ke=x*1,
dx
We readily find that

AE,=hwx=|f|*/2m, (62)

which is independent of & and equal to the mean
energy transfer for transitions {rom the ground
state.

1 d\*
AEve*/ho = ~~(1 —i—~) (e~ zxkt1)
k! dx

1 d \E1
_@fﬁ(1+d‘;> (e77x*).  (61)

Faraday’s Law and Ampere’s Law

Francis W. Sears
Dartmouth College, Hanover, New Hampshire
(Received 28 January 1963)

It is suggested that the origin of the induced electromotive force in a stationary circuit,
given by Faraday's law of induction, could be made clearer to a beginning student if emphasis
were placed in introductory courses on the geometry of the induced electric field set up by a
time-varying magnetic field instead of on the line integral of this field around a closed path, or
the emf in the path. If the Faraday law is written as #E-ds = —&, instead of §= —&, it has
the same form as Ampere’s law, #FB-ds=puol, and both laws are simply the integral forms of

the Maxwell equations, curl E= —RB, curl H=J+D.

T scarcely seems necessary to point out the
importance, even to an elementary student, of
a clear understanding of the nature of the in-
duced electric field associated with a time-varying
magnetic field. In most introductory courses,
however, we emphasize instead the more compli-
cated concept of induced electromotive force;
that is, of the line integral of the induced electric
field around a closed path, and the nature and
even the existence of the induced electric field,
itself, remains a mystery to most students. Three
references serve as illustrations.

In areview* by Hugh C. Wolfe of a recent text
in Electricity and Magnetism,? there appears the
following remark: “The author suggests that the
student who is baffled by induced emf in a wire
looped around a uniformly wound toroid in which
the current varies—because B is zero where the
wire is, no matter how the current varies—may
feel better if he knows that the vector potential is
not zero and its time derivative gives the induced
electric field.”

* 'Hugh C. Wolfe, Am. J. Phys. 28, 681 (1960).

? William T. Scott, The Physics of Electricity and Mag-
neizsm (John Wiley & Sons, Inc., New York, 1959).

We will all agree that many students are baffled
by this question, particularly, if they have been
brought up to believe that every induced emf re-
sults from the “cutting” of lines of induction;
but, it is small solace to a beginning student to be
told that he has only to calculate the vector po-
tential, and that its time derivative will give the
induced electric field.

Also, in an article? by Vladislav Bevce, on “The
Electromagnetic field of a Ferromagnetic Trans-
former,” the author says: ‘““The emf induced in a
Ioop around the transformer core can be calcu-
lated by Faraday’s law. Now, if a student that
has been presented with such a model wishes to
calculate the electric field E at a point just out-
side the core (where the windings can be placed)
using Maxwell's equations, he is faced with the
dilemma of how to use the field equations where
no magnetic induction exists---. These diffi-
culties are resolved if we recall the fact that
dynamic electromagnetic fields must be solutions
of the wave equation derived from Maxwell’s
equations.”

# Vladislav Beve, Am. J. Phys. 28, 637 (1960).



