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Quantum Mechanics of Beats between Weakly Coupled Oscillators*

PaurL H. E. MurJer aND ToMmovasu TANAKA
The Catholic University of America, Washington, District of Columbia
(Received 9 August 1962)

Although the weakly coupled double pendulum seems to be a standard illustration in classical
mechanics, it is seldom mentioned in quantum mechanics. It shares this fate with the damped
harmonic oscillator, but while there is a good reason for avoiding the last one in quantum
mechanics, the first can be treated with the same procedure as in classical mechanics. The exact
solution is then compared with the solutions obtained by time-independent and time-depen-
dent perturbation methods. It turns out that there are some additional steps to be taken,
compared to the usual textbook treatment of the time-independent perturbation theory, due
to the fact that all the levels of the unperturbed problem are degenerate. It is shown that the
diagonalization of the secular matrix in the time-independent problem is equivalent to a prob-
lem of rotation of angular momentum operators in function space. The time-dependent problem
needs, again,additional steps due to the degeneracy, and it yields the well-known beat-behavior.

HE basic idea of many linear problems in

mathematical physics is the recognition
of the normal modes of the problem. In its
simplest form, this is illustrated with the double
pendulum which shows the basic characteristics
of nearly all linear problems in mathematical
physics: the initial condition has to be decom-
posed in normal modes and the solution for
t>0 is determined by these amplitudes and
certain time constants which are found from
the diagonalization of a matrix.

Since one can illustrate many features of
quantum mechanical time-dependent perturba-
tion theory with the help of this simple system
it is worthwhile to display the solution of this
problem in quantum mechanics. The calculation
can be performed in three different ways. First,
one can solve the problem exactly by diagonaliza-
tion of the potential energy. This is done in the
first section. Second, one can consider this model
as an illustration for the (time-independent)
perturbation theory by assuming that one has
two independent oscillators with a weak mutual
interaction. Finally, this. model will serve to
illustrate time-dependent perturbation theory.
We take two independent oscillators, the first
one in an excited state, the second in the ground
state, At time t=0 we introduce suddenly the
interaction potential and watch the behavior of
the first oscillator.

All this follows standard methods and no new
results are obtained. The energy which was

* Supported by the U. S. Air Force.

originally concentrated in the first oscillator will
transfer to the second oscillator in the same
fashion as the classical problem behaves, as is
the case with many other characteristics of the
harmonic oscillator.?

The time-independent perturbation theory is
performed in the standard fashion. We deal
with a degenerate initial state, hence the secular
matrix has to be diagonalized. At first sight this
looks like a considerable task, at least for
arbitrary # value, but the matrix turns out to be
equivalent to one of the matrices in angular
momentum theory, hence the eigenvalue can be
obtained by a simple argument. It is amusing to
see that the exact solution for the eigenvalues is
much easier to obtain than the approximate
solution.

The “‘test” of the time-dependent perturbation
theory also brings out a rather interesting point.
In this case the usual prescriptions do not work
since both ‘“initial” and ‘“final” levels are
degenerate and only one of the components of
the ‘“‘initial”’ level is occupied at ¢=0 in the
initial value problem we are posing ourselves.
The necessary modification, that is first to
introduce the secular transformation on the level
system before one applies the wvariation of
constants techniques leads to the well-known
beats of the double pendulum.

1'We would like to use this opportunity to conjecture a
new ‘‘theorem’’: All suggestions about the similarity
between quantum mechanical and classical mechanics
which are the result of the harmonic oscillator problem are
not true in general!
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162 P. H. E. MEIJER

There is an interesting application of this
model known for a long time. It was noticed by
Fermi in 19312 that in a CO; molecule the first
level of the symmetric stretching mode has
approximately the same frequency as the second
level of the bending mode. Later, this phenom-
enon was found also in a number of similar
molecules. The details of this situation differ.
First, the coupling is not of the type x;x» but
proportional to xus® since lower monomials
are excluded by symmetry arguments. Secondly,
the oscillator number two is actually a two-
dimensional oscillator, which introduces a degen-
eracy already in the uncoupled problem. Thirdly,
as mentioned before, the “bare’ frequencies are
not comparable (»;=~»;) but one is double the
other vi=2p; This will make a complete cal-
culation more elaborate but the same features
will be displayed ; i.e., new normal modes have to
be introduced to obtain independent Schridinger
equations, and the wavefunctions are Hermite
functions with slightly different scaling lengths.
The calculation shows that the wavefunctions are
not simply linear combinations of the wavefunc-
tions of each individual level, but that all
other states are coming in. This is not surprising
since, contrary to the usual perturbation proce-
dure which is cut off after a certain order, the
solutions are exact.

The second part of the considerations, ie.,
what happens if we excite one of the oscillators
could only be followed experimentally if it were
possible to decouple the modes temporarily.

2. THE EXACT SOLUTION

The Hamiltonian of a set of two identical
coupled oscillators in one dimension is

h2 s 0% AW
St
2m 63012 89(322
+ Gkx 2+ Lhxo 4w o) = B,

where « is the coupling constant. The same
transformation in configuration space as is used
in the classical case will bring the potential

(2.1)

2R, Fermi, Z. Physik 71, 250 (1931). Fermi made some
estimates for the binding constants. As a result of his
theory the precise wavenumbers were determined experi-
mentally. See G. Herzberg, Infrared and Raman Spectra of
Polyatomic Molecules (D. Van Nostrand, Inc., Princeton,
New Jersey, 1945), p. 217.
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energy in diagonal form. (The fact that we use
two identical harmonic oscillators was just for
convenience since this step can be taken just as
well in the general case, as holds for most of the
arguments below.)

y1= (x14%4)/V2,
Y= (x1—2%2)/V2.

(2.2a)
(2.2b)

The V2 operator is invariant under a unitary
(actual orthogonal) transformation and, hence
the new Hamiltonian operator is

h?

B= (V) eyt by (2:3)
m

where ki=k+x, and ky=k—«k. The resulting
differential equation is separable, and the general
solution is the following linear combination of all
different product solutions of the individual
equations,

Y= Z Cn1n2¢ﬂ1(pn2y (24—)
On,=Np Ha (81) expl — 2182 —iE.t/h7], (2.5a)
§0n2=Nn9H"2 (E2) eXp[M%EQQ'—'L’E"zt/fL]r (25b)

where H is a Hermite polynomial, &V its normal-
ization constant, and £; and §; are given by

fr=ay1=a1(x1Fx3)/V2;
Ea=azys=az(x1—%9)/V2;

alt=mki/f? (2.6a)

ayt=mky/H. (2.6b)

The relevant quantities are of course the “scale-
factors’ a; and @, which differ for each oscillator.

In order to anticipate the arguments for the
next section we will assume that the system was
at t<0 in such a state that x=0 and one oscil-
lator, say the first one, was in the ground state,
and the other in the first excited state:

téO: ¢=N0N1Ho(x1)H1(x2)

Xexp[ —3a (2 4x%) —iEt/h], (2.7)

where a*=mk/#? and E is given by the sum of
the energies of the individual oscillators. Actually
E is irrelevant since we use (2.7) only for ¢=0.

[n order to obtain the coefficients in Eqg.
(2.4) for this special initial condition, we have to
evaluate the following integral which is obtained
by multiplying the left- and right-hand side of
(2.4) by (2.5), and applying orthogonality.
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Com= /z//gon(l) en(2)dridTs

1
=N0N1NnNman[ -, (1) T (2)
(11022
1
AL OLM ], 28
a1°as
I.G)= / Ha(y) exp(—3ay?)dy, (2.9a)
(i) = / VHA(3) exp(—Jaiy)dy, (2.9b)
al=1+a%/a’ (2.10)

If we introduce
B2=(2—a’)/al=(a?—a*)/(a’+0a?),
we find for the product

2w
In ()T m(f) =—B:" (58, +mB;m")  (2.11)

a0y

if n =even and m =odd ; otherwise, the product is
zero. Hence if #n and m have different parity
either one or the other term in (2.8) is nonzero,
and if # and m have the same parity the coeffi-
cient Cpn will be zero.

Substituting this in (2.4) will give the time-
dependent wavefunction. Its explicit form is

¢(£1£2:t) = Z CnmN'an(fl)Nm}Iwz(S?)

il
expl:—%l-{ (n+3)hwi+ (m—}—%)hwg}], (2.12)

where Cnn is given by (2.8) and (2.11) and
wf—:ki/m, (’L=1, 2)

The time-dependent perturbation method is, so
to speak, an attempt to write the expression
(2.12) in a form in which the exponential
contains w, instead of w; and ws. This is, of course,
impossible, and hence the constants ( are
modified into time-dependent coefficients.

3. TIME-INDEPENDENT SOLUTION

In order to obtain the first-order time-in-
dependent solution we have to consider first
the degeneracy of the: problem. As long as the
two equivalent oscillators are independent their
energy states are counted individually and hence
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are nondegenerate since we consider linear
oscillators, If we consider the two oscillators as
one system, as in statistical mechanics, the
degeneracy is n+1. This is the number of ways
in which the integer # can be divided in two
parts n, and ., including zero.

When we consider the secular matrix we find
nonzero matrix elements only if the conditions
ny =n1+1 and #y’=n,F1 are simultaneously
fulfilled. If we order the elements in an appro-
priate manner (increasing #; and decreasing #,)
we have two sets of elements parallel to the main
diagonal reminiscent of the matrix of the L,
operator. The shape of the matrix is not the
only thing they have in common: they are iden-
tical provided we take j=n/2 and m=3%(n;—ns).
Hence the matrix can be diagonalized by a
transformation in function space using the so-
called D coefficients® corresponding, for instance,
to a rotation 7/2 around the y axis which brings
the x axis into a 2 axis. The eigenvalues are
proportional to m, hence to 4 (rn1—n,).

This corresponds to the second term in the
power series development of the correct coupled
energy levels in terms of the coupling constant

4yt k—r\?
E= (n1+—%)h<—() + (712*+%)h<——~>

mw m

=(n+1)ho+3 (nl——?h)ﬁwg

K\ 2

——%(nl—iwnr]—l)hw(;) +- (3.1)

In order to obtain the third term in this
expansion by means of time-independent per-
turbation we would have to transform the n41
wavefunctions in the manner indicated above.
It is possible and actually preferable to avoid
this. In the representation corresponding to L.,
the matrix elements connecting a state having a
certain #; and #. of the level E.(m=n,4n,)
with the wavefunctions of E,.., are extremely
simple, and the performance of the diagonaliza-
tion of the secular matrix would destroy this
simplicity. :

Il we calculate the matrix elements between
E. and E,.s we are dealing with a system in

SE. P. Wigner, Group Theory (Academic Press Inc.,
New York, 1959).
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which both initial and final levels are degenerate.
Suppose we wanted to determine the proper
linear combinations in each set; let the label be
» for the set connected with E, and u for the

intermediate set belonging to En, (#'=n-+2).
The second-order perturbation is
Vo [ H )2

E,, =% ——— (3.2)
# En_En’

Since £, is independent of u the expression cor-

responds to a simple contraction and the choice

for the linear combinations is arbitrary. Hence

we prefer to use the original set labeled by #,

{or ' =ny+ny):

| H fu)p [ H [v)=(v | H' |0y )X [ '] 9).
The same argument can be used for the initial
level if we sum over », and divide through by

n+1, since E, is independent of » at least in
second order.

1
En(z) :““—’(En'“En’)_l Z |<VlfI,]:“>i ?
n-+1 i

(na| HY | my') |2 (3.3)

1
:F’_ﬂ(En_En’)_l Z
n+ 1 niny’
The last argument can be calculated directly
from the well-known selection rules for the
harmonic oscillator. For the transition # — n-2
we have

1OV 2=300) S (D) (e—mt1)  (3.42)

n1==0

and for the transition # — #—2 we have

-1

1) 2=—1~<ﬁw>2”>iln1<n—nl>.

nl=

(3.4b)

After multiplication with the energy denomina-
tors (£2%w)~! we find for the total contribution
to this matrix element:

E.,®=3n+1ho

in accordance with the previous result.

4. THE TIME-DEPENDENT PERTURBATION
THEORY

The ordinary time-dependent transition prob-
ability theory as found in the standard text

AND T. TANAKA

books* consists of two parts. The first part is a
variation of constants technique in Heisenberg
representation where the resulting differential
equations are solved by an iteration technique,

Usually not more than the first step is really
calculated. The second part is to translate this
time-dependence of the amplitude into a rate of
decay of a certain state. The last part is only
applicable to a system with continuous energy
spectrum and is not of interest here.

We first show that the method can be slightly
modified to give the correct dependence for a
longer time interval. If we call the unperturbed
wavefunction ¢, and the correct eigensolution of
the perturbed problem ;. we have for t<0

V=3 apeier e (4.1a)
and for ¢>0

= Z b/cei‘“’ﬂtylxk (41b)

oy = 4 the unperturbed energy. At =0 these
functions should be identical

> arer=2 bpVy. (4.1)
Suppose @;=1 and all other zero, we have
©1= 22k Yils. (4.2)

Hence, if we introduce the expansion of the
perturbed eigenfunctions into the unperturbed
eigenfunctions

=227 ¢sSi (4.3)
then the amplitudes b, are given by
b= Su* (4.4)
the result for £>0 is
V() =3"% SyFeiosty,
=25 Sute®r 3 ; 0iSik. (4.5)

If we substitute the result from the time-
independent perturbation theory then,
We introduce a coefficient C;(#) that would
stay equal to the following constants
Ci=1; C;=0 (G
if the perturbation were not switched on at ¢=0.
The state vector is
V() =2 Cil) e (4.8)

4See, for instance, L. I. Schiff, Quanium Mechanics
(McGraw-Hill Book Company, Inc., New York, 1955).

4.7)
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and the coefficient C; (j£1) given by

Hy*
i)y =3 | b+ |

kT Ly

X ij
Xew(wlrwl) t{:aw—i—"—_— .. :l
bk, —E;

Hyl, .
:__77[1_61(40]'—0)1)5]_*_. ce (49)

El—ﬂj

This result is almost the same as that obtained
by the variation of constants technique followed
by the iterative solution except that the fre-
quency is « instead of «°. This difference is
important in case we have degeneracy, since the
levels will be split under the influence of the
perturbation, and each component has a slightly
different frequency.

We will now describe the modification for the
case in which the initial level is degenerate and
only one of the components is ‘‘excited.” In this
case we have one oscillator in state #;, the other
in the ground state. All other components of the
degenerate level are those values #," and .
that add up to the same total » value. The
wavefunctions belonging to the degenerate level,
after the perturbation is switched on, will have
normal modes, whose amplitudes we indicate
by Bk. The time dependent behavior is given by

o, (t) = Zk Siklgkemwkty

and the 8’s are determined by the initial condition

(4.10)

a=1; a=0 (E#v)

where » refers to the initially “‘excited’’ level. For
Br=Su*, (4.11)
ai(t) =2 SiSyiteibert,

Both sides of Eqgs. (4.10) and (4.12) are
divided by expiw’, where «° is the energy of the
levels before the perturbation was switched on.
The occupation of the levels is given by

Iai P= (Zk Sq‘,kSVk*eiAwkg)
X (Zl STZ*Syle#{'Awlvt)'

(4.12)

(4.13)
Subtracting the identity

| 22 SuSu*|2=8, (4.14)

MECHANICS OF OSCILLATORS
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la:|2=00+ 2 SuSu*SutS,i(efBurent—1)

k<l

" dceo=8,+ Y. Im(SuS.iaFSi*S,)

k<l
X 24 sin (Awy — Awj)t
— Z Re (SilcSvlc*Sil*Sﬂl)

k<l

X4 sin? (Awy— Awp)t.  (4.15)

In the absence of a magnetic field the unitary
transformation that diagonalizes the secular
determinant can be chosen real. Hence,
las]2=684— 3 4SuSuSuSu

k<l

Xsin®} (Awr—Aw)l.  (4.16)

If we take the simple case in which #;=1 and
#5=0 we have twofold degeneracy. The product
of the four S factors is 1 for ¢=» and —% for
i1#v and the state a; is depleted and occupied
with a frequency Aw;— Aws which is proportional
to the coupling constant.

APPENDIX

With the help of the usual generating function
method we find

snI,(7)
, —=/exp(—s2+2sy—%a2y2)dy
=0 !
(27)%
= expl[s2(2—a?)/a?]
67
2r)} » 1 /2—a®\™
e Ly
‘ a m=0 mI\ o
Hence,

L=[2=a%) /e’ ][ (27)}/a] (A2)

for n is even and zero for n =0dd for every value
of a, except a®?=2, In this case:

I,=8.,[(2m)i/a].

The second integral can be obtained from the
first using

(A3)

y[{n = %I{n—}—l +' ﬂHn‘ 1 (A4:)

giving

(2m)i 172 — a2y (D2
)
a L2\ o2

9 g2y (n—1))2
-l-n( > } (A5)
012




