N
&:(smﬂ'm ()JI’PHYS]CS

Solution of the Schrodinger Equation for the Hydrogen Atom in Rectangular
Coordinates
G. R. Fowles

Citation: American Journal of Physics 30, 308 (1962); doi: 10.1119/1.1941997

View online: http://dx.doi.org/10.1119/1.1941997

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/30/4?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
The angular part of the Schrédinger equation for the hydrogen atom
Am. J. Phys. 70, 569 (2002); 10.1119/1.1456076

Path integral solution of the Schrdodinger equation in curvilinear coordinates: A straightforward procedure
J. Math. Phys. 37, 4310 (1996); 10.1063/1.531798

The Schrédinger Equation in Orthogonal Curvilinear Coordinates
Am. J. Phys. 41, 1206 (1973); 10.1119/1.1987522

Higher-Order Finite Difference Solutions of the Schrédinger Equation for the Helium Atom
J. Chem. Phys. 54, 35 (1971); 10.1063/1.1674615

Hydrogen Molecular lon: Solutions of the Schrédinger Equation Expressed as Integral Equations
J. Chem. Phys. 42, 3537 (1965); 10.1063/1.1695756

Explore the AAPT Career Center -
access hundreds of physics education and

other STEM teaching jobs at two-year and
four-year colleges and universities.

%:HEI
http://jobs.aapt.org mﬁ



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://jobs.aapt.org/
http://scitation.aip.org/search?value1=G.+R.+Fowles&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.1941997
http://scitation.aip.org/content/aapt/journal/ajp/30/4?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/70/6/10.1119/1.1456076?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/37/9/10.1063/1.531798?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/41/10/10.1119/1.1987522?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/54/1/10.1063/1.1674615?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/42/10/10.1063/1.1695756?ver=pdfcov

308

be requested to step up and set the audio oscillator, by
“ear,"” first to one and then to the other of the two limit
frequencies, the class being the judge of the approximation.
Thus the Doppler frequency shift can be measured directly
on the audio oscillator, provided its frequency dial is good
enough for the purpose. An interesting observation is that
a small speaker may abruptly cease to produce an output
at some frequency in the 4000- to 7000-cps interval,
although it may produce an appreciable output at an
adjacent frequency. Thus a student may find that he can-
not simulate the tone he just heard by resetting the
frequency dial; the audio generating system is not capable of
generating the frequency THAT THE ENTIRE CLASS
HEARD JUST A FEW MOMENTS EARLIER! This
result always seems to fascinate the students.

The physical constants of the pendulum using a speaker
“bob™ frequently are such as to allow a 1-sec swing in each
direction, meaning that the Doppler-shifted frequency will
be with the class for about a second. This desirable condi-
tion requires, however, that the class includes a six-footer,
patient enough to hold the pendulum double-conductor
string high up in the air for the time required. The reward
is then a swinging arc that exceeds 6 ft in length, with very
distinct frequency deviations as result.

1 H. Weltin, Am. J. Phys. 29, 713 (1961).
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N the conventional textbook treatment of the Schrodin-
ger equation for the one-electron atom, spherical co-
ordinates are nearly always employed. The student is often
given to believe that spherical coordinates are the only ones
that can be used in central-field problems. It is the purpose
of this note to point out a method of solving Schrédinger's
equation for the one-electron atom in rectangular coordi-
nates. The angular momentum eigenfunctions are found
without any reference to polar angles.
Consider the time-independent Schrodinger equation

V¥ + 2m/#)(E—V)p=0. M

Suppose we regard the wave function as a function of
%, v, 2, and 7, where r2=42432422. That is, whenever the
combination a?+3242? occurs, it will be written 72 It will
be convenient to use the notation

¥(x,9,2) = f(x,3,2,7). (2)

Then, since 8r/9x=x/r, we have
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with similar expressions for 9% /9y* and 0% /9z>. Upon
adding these three expressions, we readily obtain
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after collecting terms and performing the obvious cancella-
tions. In the case of a central field, since V is a function of
7 alone, we shall assume that the r-dependent part of f can
be separated, that is

f@y.37) = F(x,y,2)R(r). (6)
Accordingly, Eq. (5) becomes

aF 9F

VH=RV*F+ —R’) +y—+z—z)—|—F "4l ~FR!,

and the Schrédinger equation may be written
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after division by F.
Let us seek solutions such that F satisfies Laplace's

equation V2F=0. It is readily verified, by differentiating,
that the function

= (ax+by+tcz)! (8)
is a solution, provided

a2+ +c2=0. )]
Thus at least one of the three constants g, b, and ¢ must be
complex. Furthermore, if F is to be single-valued, then /
must be an integer. Now, by direct substitution, we find
that
ol
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Consequently, Eq. (7) reduces to the radial equation
R'420+1) /7 IR + (2m/%) (E— V)R=0.  (11)

For a one-electron atom of nuclear charge Ze, we have
V=—Ze?/r. Upon introducing the dimensionless variable
p=ar and the eigenvalue parameter A= (—2E) ¥Ze*m%!,
where a=2mZe2h 2\, and letting R(p) =¢?2L(p), Eq.
(11) transforms into

pL"+[2(+1) —pIL'+(—I1-1)L=0.
Well-behaved solutions of the above equation are the
associated Laguerre polynomials L.;#'*1(p), where A=n
(an integer). Thus the eigenvalues of E are given by the
well-known formula E,=—mZ%%?2x~2 Our corre-
sponding eigenfunctions can be written explicitly as

follows:
Yn1=FiRn 1= (ax+by—|—cz)’ expl —a/2 (x2+32+22)4]
L2 [a(xt+y+29)4]

(12)
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Consider now the angular momentum M. We have

M= —ik[x(8/3y)—y(3/8x) ¥ (14)

with similar expressions for M, and M,. Letting ¢y =FR,
as above, we find that we can write

M.F= —ih[x(3/dy) —y(3/dx)F, (15)
where we have made use of Eq. (3). In other words, the
r-dependent factor R commutes with the angular momen-
tum operator and can be cancelled out. Similarly, we find
that R commutes with the operator M?, and we can write

WF= hz[( 9 i)2+( 9_,9Y
B “ay Yozl T\ az" %5y

a a\?

Upon letting F= F, subject to condition (9), we find that
the above equation directly gives

M2E,=#1(I+1) F. arn

Thus the eigenvalues of M? are #2/(!+1). Notice that we
have not designated any particular axis as preferred.
The situation concerning a particular component of M
is a little more involved. From Eq. (15) we find that
MoFi= —iti 22 )F
T T M\ axt by tea)
Thus F; does not yield a definite value for M,. But let us
examine the condition that F; be a solution of Laplace’s
equation, namely @®+#+c2=0. This condition can be
satisfied by defining @, b, and ¢ in terms of two arbitrary
complex numbers # and v as follows:

a=ut—v* b= —c(ut+®) c=—2uv. (18)
Then
Fi=Tw—®)x—i(u2+12)y—2uvz ]
=[u2(x —1y) — 2uvz—* (x+13) J% (19)
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Expressed in this way, F; is a homogeneous polynomial of
degree 2! in u and v, and therefore Fi contains 2/-+1 terms,
the coefficients of which are polynomials of degree /in x, v,
and z, viz.,

1
Fi= 2 ubmltmQpe(x,y,2).

m=—1

(20

For example, if =2 (d states), we have

Fo=[u?(x—iy) —2uvz—1?*(x +1y) J*
=ut(x —iy)2 +dul (x —iy)z+ 2022 (222 —x? —3?)

—4u? (x+iy)z+v* (x+1)2
Then

Qri= (i), 0i'=(—iys, QP=2—x-¥,

Qo' =(x+iy)z, Q= (xFiy)™

Owing to the fact that # and v are arbitrary, the Q's are

each solutions of Laplace's equation. They are therefore

suitable eigenfunctions for our central field problem.!

Furthermore, it is easily verified for the above Q's (I=2),
and it can be shown to be true in general? that

—i[x(8/8y) —y(8/0x) JQ1™ =mQr™, ey

where m can have any of the values —I, —J4+1, . . . [

Thus, from Egs. (15) and (21), it follows that in the Q

representation the z component of the angular momentum

has the eigenvalues m#. The corresponding eigenfunctions
are

Yo tm=Qr (x,3,2) Ra, 1 (a2 + 32 224,
where R, ; is the same as that appearing in Eq..(13).

(22)

1 There are just 2 /41 linearly independent polynomials of degree ! in
x, 4, and z that satisfy Laplace’s equation. There is any number of ways
of choosing a set of these polynomials, and Egs. (19) and (20) indicate
one way of constructing such a set. See, for example, E. W. Hobson,
Spherical and Ellipsoidal Harmonics (Cambridge University Press,
New York, 1931).

2 This can be done directly or by transforming to spherical co-
ordinates. See, for example, H. A. Kramers, Quantum Mechanics
(Intersecience Publishers, Inc., New York, 1957).
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Electromotive Force Again

N discussing ‘‘Conservative fields in dc networks” [Am.
J. Phys. 29, 484 (1961)7, Emerson M. Pugh has sought
to clarify the confusion which often surrounds the concept
of electromotive force. In this he has been only partially
successful. It is true that in a dc network powered by a
thermocouple, a chemical cell, or a Van de Graaf generator
there are forces per unit charge in addition to those repre-
sented by E in Maxwell's equations. (In these devices the
emf is the line integral of these forces per unit charge
around a complete circuit.) But this is not the case for
electromagnetic generators of any kind, which are fully
understood in terms of Faraday’s law of induction, with
appreciation of the role of frames of reference in relative
motion.

Let us consider two dc electromagnetic induction devices.
The motion of conductors in constant uniform magnetic
fields produces no emf in any simgle frame of reference,
which is equivalent to stating the obvious fact that there
is no emf in a rigid coil at rest in a constant magnetic field.
Thus a linear conductor moving uniformly in a uniform
magnetic field cannot properly be said to have an emf
produced “‘across it,"” since the existence of an emf depends
on how the circuit is completed. An emf does exist in the
loop formed by a conductor cutting lines of B and flexible
or sliding contacts to a stationary galvanometer, for
example. The “homopolar generator’’ seems more compli-
cated, but the essential physical situation becomes apparent
if the magnet is not made a part of the conducting circuit,
and if the usual metal Faraday disk is replaced by an



