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Phase-Shift Method for One-Dimensional Scattering

A. H. Kanx
National Bureaun of Standards, Washington 25, D. C.

(Received September 6, 1960)

The phase-shift method is developed for the problem of the scattering of a one-dimensional
wave by a symmetric potential. Reflection and transmission coefficients are expressed in terms
of the phase shifts of odd and even solutions of the Schrédinger equation in the asymptotic
range. Integral equations are established for the phase shifts and some approximate methods

investigated.

1. INTRODUCTION

HIS paper applies the method of phase

shifts to the problem of quantum-
mechanical scattering in one dimension. Reflec-
tion and transmission coefficients are expressed
in terms of phase shifts of basic real wave
functions which satisfy simple boundary condi-
tions. The method is amenable to approximate
procedures.

The author’s interest in problems of one
dimension arose from a study of the scattering of
electrons in solids by ionized impurities, in the
presence of a strong magnetic field. In that
situation,! the magnetic field influences the
dynamics of an electron so that the motion
parallel to the field is essentially one-dimensional
free motion, while its transverse motion is
bounded. The use of time dependent perturbation
theory for scattering by impurities with the
magnetic field present leads to divergent scatter-
ing rates,? and approximate methods related to
the present type of approach are necessary.

In the following sections the phase shifts are
defined and the scattering problem formulated
in terms of them. Integral equations for the
phase shifts are produced and approximate
methods for solution discussed.

II. FORMULATION OF THE SCATTERING
PROBLEM

We consider the scattering of an incoming
wave e by a potential V{x).* V(x) is assumed
1 A. H. Kahn and H. P. R. Frederikse, Advances in Solid

State Phys, 9, 257 (1959).
2 A. H. Kahn, Phys. Rev. 119, 1189 (1960).

symmetric about the origin and of finite range.
Upon letting v(x) =2mV(x)/h? the Schrédinger
equation for this problem is written

(@ /dx?) + kY =v(x)Y. (1)

We require a solution which satisfies the

boundary conditions

Y(x) — eefrei as

¥ (x) — te™* as

X — — ®
@)
x — + o,

where 7 and ¢ are reflection and transmission
amplitudes. The quantities of ultimate interest,
the reflection and transmission coefficients, are
given by the absolute squares of the respective
amplitudes.

Instead of working directly with the function
¥, we introduce two new functions ¢, (x) and
¢_{(x), real solutions to Eq. (1) which are even
and odd in x, respectively, and form a complete
set. We have

¢+'(0)=0
é_(0)=0.

(3a)
(3b)

For [x{>>a, the range of the potential, the ¢'s
must go over into linear combinations of the
sine and cosine solutions of Eq. (1) for v=0. We

3 Specific examples of this type of problem are given in
the texts: L. 1. Schiff, Quanium Mechanics (McGraw-Hill
Book Company, Inc., New York, 1949), 1st ed., Chap. V;
and L. D. Landau and E. M. Lifshitz, Quanium Mechanics
(Pergamon Press, New York, 1958), pp. 72-77. In this
treatment the problem is given in more general form.
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write these asymptotic forms as

o0 () cos(kx—+6,)
x) —>——————
N COS0+

sin (kx+0.)
¢ (%) > —————
sind.-.

cos(kx—6,)

by () = —
Cosd¢
sin (kx—35_)
¢_(x) > ——
SIno_

In Eq. (4) the choices of sign of the phases 6. are
taken to assure the proper symmetries of the
¢'s about the origin; the denominators provide
convenient normalization. If the potential »(x)
were to vanish, ¢, and ¢_ would be the functions
coskx and sinkx, respectively. The sinkx com-
ponent of ¢, and the coskx component of ¢_,
for large x, represent the effect of the scattering
potential. We now expand the ¢ function as a
linear combination of the ¢ functions. We set

Y=A¢;(x)+Bo_(x). (5)

The constants 4 and B are determined by
requiring ¢ to satisfy the asymptotic boundary
conditions (2), while employing the forms [see
Eq. (4)] for the asymptotic values of the ¢’s.
The results are that A =cosd,exp(?5;) and
B=1isiné_exp(i6_). Then we find » =3[ exp (245,)
Xexp(2656_)] and t=4[exp(246;)+exp(246_)].
Finally, the reflection coefficient R and the
transmission coefficient 7" are obtained:

R=sin?(6,—5_)

T=cos*(6,.—5_). ©)

We observe that R+7"=1, as is required.

We have thus reduced the problem of finding
the scattering coefficients to that of calculating
the asymptotic phase shifts of the even and odd
solutions of Eq. (1). This is analogous to express-
ing the differential scattering cross section, for a
spherically symmetric scatterer, in terms of the
phase shifts of the radial functions corresponding
to the various angular momenta. In fact, our
solution ¢_ satisfies a differential equation and
boundary conditions identical to those of the

=coskx —tané, sinkx

=sinkx-tand_ coskx

=coskx-+tand, sinkx

=sinkx — tand_ coskx

~

rx——>—|—oo

4)

PX —> — 0,

s-wave radial function in three-dimensional
spherically symmetric scattering.*

III. GREEN’S FUNCTIONS

In the following section, the Schrodinger
equation with boundary conditions of Egs. (3a)
or (3b) will be converted into integral equations.
This procedure will fead to useful approximate
methods. For this purpose, we introduce the
Green’s functions which satisfy the equation

[dK (xx")/dx* |+ B2K (xx")=8(x—x"), (7)

with boundary conditions to be specified later.
Upon integrating Eq. (7) over x, across a small
region including x', we find that the Green's
functions have a discontinuity in derivative
given by

. dK (x,x")
lim —_—

0

dK (x,x")
[ dx

|-+ ®

Te=g'—€

T=2" 1€ dx

Let us find the Green’s function K {(x,x") for
the boundary condition in Eq. (3a), satisfying

dK (x,x")
dx

=0. 9)

z=0y z’'>z

Since this will be needed for the representation
of the scattering part of ¢, we require

K, (xx") « sinkx (for x>x’). (10)

4See, for example, N. F. Mott and H. S. W. Massey,
The Theory of Atomic Collisions (Oxford University Press,
New York, 1950), 2nd ed., Chap. I1.
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We write K, in the following form:
A coskx+B sinkx  x<x’

K-‘r—(x:x,) ={ .
C coskx+D sinkx x>x’.

Applying the boundary conditions, we evaluate
the constants in Eq. (11). We find

(1/E) sinkx’ coskx x<x’

(12)
(1/k) coskx’ sinkx x>x'.

K—I— (x!x,) = {

Similarly, for K_ we must satisfy, in addition to
Eq. (8), the conditions

K_(0x)=0 (for x'>0)
(13)
K_(x,x') < coskx (for x>x').
In like manner, we obtain

— (1/k) coskx’ sinkx x<x’
K_(xx)= ] (14)

— (1/k) sinkx’ coskx x=>x’,
which is the same as in three-dimensional

s-wave scattering.®

IV. INTEGRAL EQUATIONS FOR THE
PHASE SHIFTS

The solutions ¢, may be written as super-
positions of the solutions of Eq. (7), by using
the appropriate K., with the addition of a
suitable solution of the homogeneous part of
Eq. (1). Since the unknown appears in the
inhomogeneous term, the result will be an
integral equation.

For the basic ¢ functions we find

¢ =coskx -{—f K (x,x)v(x") oy (x)dx’
0

(15)
¢>__=sinkx—l—f K_(xx)v(x)o_(x")dx'.
0
In the limit of large x, we obtain
¢ () ~coskx+sinkx
©1
Xf — coskx'v(x") ¢ (x")dx’
o k
(16)

¢ (x) =sinkx —coskx

*1
Xf ;asinkx’v(x’)cﬁ_(x’)dx’.
0

5J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18
(1949).

Upon comparing with Eq. (4), we make the
identifications

tand, = — (I/k)f coskx'v(x" Yo (x")dx'

° (17
tané_= — (l/k)f sinkx’v(x")$- (x")dx’.

0

V. APPROXIMATE METHODS

Perhaps, the simplest method of finding an
approximate solution for the scattering coeffi-
cients in a one-dimensional problem is to perform
the numerical integrations of the Schrédinger
equations for ¢, and ¢_. From the asymptotic
forms one may find the phase shifts and obtain
the results directly.

In the case of scattering by a square barrier,
as treated by Schiff,® an exact solution is more
easily obtained by the phase-shift method,
avoiding a certain amount of tedious matching
of incident and scattered waves at the boundaries
of the scattering potential. This is performed in
the Appendix.

At first glance, one might have tried to find a
direct approximation to the reflection coefficient,
without appeal to the phase-shift method, by
employing golden rule #2,7 i.e., first-order time-
dependent perturbation theory.® According to
this method, the probability per unit time for a
reflective transition from state £ to state —% is
given by

Wi = Que/B) [(— k| V (%) [k) %7, (18)

where {(—%|V|k) is the matrix element of the
scattering potential between initial and final
states, and p; is the density of final states per
unit energy range. If the initial and final state
wave functions are e#* and e~%*, respectively, we
find the reflection coefficient given by the
transition probability per unit time divided by
the incident current:

For typical potentials the matrix element is
finite for all energies. However, the density of

6 1. I. Schiff, footnote 3.

"E. Fermi, Nuclear Physics (University of Chicago
Press, Chicago, Illinois, 1940), p. 142.

8 See L. 1. Schiff, footnote 3, p. 193.
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states for free one-dimensional motion is given by
pr=m/2nhk. (20)

Therefore, for slow incoming particles, as %
approaches zero, this approximation yields an
infinite reflection coefficient, in violation of
probability conservation. Techniques which
maintain normalized wave functions must be
used.

If v may be considered small, the Born
approximation may be applied to the calcu-
lation of phase shifts. This is the first iteration
of Eqs. (14), i.e.; in the integrals we take

¢4 (x) = coskx

21
¢_(x) ~sinkx. 1)
Then, from Eqgs. (17), we find
tané, =~ — (1/k) f coskxy (x)dx
' (22)

tans._ =~ —(1/k) f sin?kxv (x)dx.
0

Whether the Born approximation is valid or not,
the results of Egs. (22), when substituted into
Egs. (6), will always yield a reflection coefficient
no greater than unity. Thus, this approximation
may have value in qualitative estimates

Some insight concerning the failure of the use
of Eq. (18) can be obtained by considering the
Born approximation for the phase shifts. If v(x)
may be considered small, we take tandy
~sind,. ~8;. Then, in the limit £ — 0 we obtain

8_=0, 6+z—(1/k)f v(x)dx.
0
Finally, we find
2

R~ (1/k2)[ fﬂ wv(x)dx} .

For sufficiently small %, the reflection coefficient
not only will exceed unity, but will diverge as
1/F2, exactly as in Eq. (20). This result empha-
sizes the fact that for low energies one cannot
replace tand, by 6, and even a weak potential
cannot be considered small.

More advanced techniques,
Schwinger variational principle,?
adapted to this problem.

such as the
are easily

APPENDIX. SCATTERING BY A SQUARE WELL

We consider scattering by a square well
potential, i.e., one for which

’ —k? x| <a/2 '
v{x) = { (A.1)
0 |x[>a/2,
where &y is constant. Let 22=%>+k%. We now
proceed to find ¢, and the phase shift §,. With
constant v, the Schrédinger equaton is solved
easily ; the solution is of the form

4 cosk’x lx| <a/2

(A.2)
B cos(kx-+6.) x>a/2.

5:0)=]

The conditions of continuity of ¢, and ¢, at
x=a/2 enable us to find §,. We obtain

E Rkay ke
dp=tan™! —k— tan——) —?. (A.3)

2
In similar fashion, we find ¢_ and the phase shift:

k k'a ka
d_=tan™! (— tan—— ) ——.
R 2 2

(A.4)

The reflection coefficient is obtained from Eq.
(6). After some manipulation of trigonometric
relations, we find

R=[1+cot?(s,—o. )] |
4k2 (k2+k02) -1
e

kot sinZka

(A.3)

a formula which is in agreement with that of
Schiff.?

It may be of some interest to compare the
result of Born approximation for the phase shifts
and reflection coefficient with the exact result of
Eq. (A.5). Upon using the potential (A.1) and
the approximations of Eqgs. (22), we obtain

tand, =~ ky*(katsinka) / 452 (A.6)
+ [2k2+ kot (k2%a? —sin*ka) /2 ]2 1

kot sinka

R~11 (A7)

The result (A.7) is qualitatively very similar to
(A.5). For ka=nmw, both formulas yield R=0,
i.e., transparency of the obstacle. Also, (A.7)
has the correct dependence on % for small 2, even
though Born approximation is valid-only for
large k.



