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the points where the branch is connected, and
in Fig. 6 it is greater. While the potential
difference between the junctions is still 5.0 volts
in each case, the secondary emf was 4.0 volts
in Fig. 5 and 6.0 volts in Fig. 6. In the first case
it is evident that a current, small relative to that
in the main line, flows clockwise through the
branch charging the secondary source of emf.
In Fig. 6 current from the primary source flows
only in the main line while the secondary emf
discharges by circulating a current counter-
clockwise in the branch.

ROLAND L. HEID

Diagrams such as these are helpful in illus-
trating for students the abstract concept of
potential and can well be employed in the
laboratory as wvariants on the usual study
performed by the students themselves.
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Exact solutions of the time-dependent wave equation are given for the one-dimensional
motion of a particle acted on by an external force and for a forced oscillator. The solutions
chosen correspond to the same time dependence for the classical momentum and for the
quantum-mechanical space average of the momentum.

INTRODUCTION

F a system is subject to some external dis-

turbance, the quantum-mechanical behavior
is described by the time-dependent Schroedinger
equation! .

Hy=ih(ay/d0). (1)

In general, this equation can be solved only by
successive approximations; however, there are
instances in which exact solutions can be ob-
tained. For simplicity, only the one-dimensional
motion of a single particle is considered. The
cases discussed in this paper are: (A) particle
subject to a time-dependent force and (B) har-
monic oscillator with a sinusoidal driving force.

A. PARTICLE ACTED ON BY A
TIME-DEPENDENT FORCE

If a particle is acted on by a force which is an
arbitrary function of the time but is independent
of position, the Hamiltonian is

H= (p*/2m) —xF, (2)

1 David Bohm, Quantum Theory (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1951), p. 192.

where F is the force. This choice of the Hamil-
tonian is easily verified from Hamilton’s equa-
tions,

dx/dt=0H/dp=p/m, (3)
dp/dt=— (dH/dx)=F. 4)

If Eq. (3) is differentiated again, the result is
Newton's second law,

md¥/di?=F. &)

The classical expression for the momentum is
;b=mdx/dt=det+const. (6)‘

The time-dependent Schroedinger equation is
obtained by substituting —4%(8/dx) for p in Eq.
(2). For this case the quantum-mechanical equa-
tion is

2 2.
e w—ngb =iﬁ%. N
2m dx? ot

In order to solve Eq. (7) let
y=e*T, (8)



SOLUTIONS OF SCHROEDINGER EQUATION

where £ and T are functions of the time. The
substitution of Eq. (6) into Eq. (7) leads to

22/ 2m) T —x FT= — (dk/dt)ix T+ihdT/dt. (9)

This equation must hold for all x and & This is
possible only if

dk/di=F/#, (10)
and

dT/dt=— (ihk2/2m)T. (11)

The integration of these equations is straight-
forward if the time dependence of F is known:

k= (1/%) f Fit+C, (12)

In7=— (ih/Zm)fk%it, (13)
where C is a constant.

The function e™* represents a state in which
the momentum and kinetic energy are known
with complete certainty since it is an eigen-
function for both the momentum operator
—1#%(98/9x) and the kinetic-energy operator
(—#%2/2m) (82/8x%). The function 7 is not acted
on by these operators. The momentum and
kinetic energy are functions of time through the
time dependence of k. The position of the particle
has an infinite uncertainty for the state func-
tion e*<T,

The observable momentum $ is given by the
equation —%(8/dx) (e#2) = pe*= .

P ==kﬁ=det—l—const. (14)
This expression is seen to be in agreement with
the classical result, Eq. (6).

It is possible to form a wave pocket in the

following way.? A general solution is

T () = f G(C)e™T(C)dC.  (15)
G(C) can be determined from the Fourier trans-
form of ¥. If ¥ is specified at the timef=0and T
is taken to be unity at =0,

L = :
G(C) =; j:w ¥ (x,0)e#=dx. (16)

2 Margenau and Murphy, The Mathematics of Physics
and Chemistry (D. Van Nostrand Company, Inc., Prince-
ton, New Jersey, 1943), p. 380.
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A particular example is the constant force.
Consider a gravitational force acting in the nega-
tive x direction; F= —mg. We obtain

k=—(mgt/B)+C,

InT= —ﬁ ngzﬁ—%az-i— Czt). an
2m\ 3n? 4
The state function is
¥ (x,t) =gt (mati+Ciz ], (18)
The momentum is
p=kh=—mgt+Ch. (19)

This result has a simple physical interpretation.
C# is the initial momentum at {=0. The effect of
the gravitational force is to cause the momentum
to change linearly with time.

B. HARMONIC OSCILLATOR WITH A
SINUSOIDAL DRIVING FORCE

The Hamiltonian is

H=(p*/2m)+34moidx?— Fox sinwt,  (20)

where w is the angular frequency of the free
oscillator, and o is the angular frequency of the
driving force. F, is the amplitude of the driving
force. Any complications due to resonance will
be avoided by assuming ws£w,. The Hamiltonian
given in Eq. (20) is a proper choice if Hamilton's
equations lead to the expected equation of
motion,

dx/dt=0H/dp=p/m,

dp/dt=—0H/0x = —mwx
+ Fo sinwt=md*/di2

(21)

Equation (21) is the well-known formula for an
oscillator acted on by a sinusoidal driving force.
The classical expression for the momentum is

dx ) Fow coswt
m—=a sinwet-}8 coswet —————, (22)
di o — wo?

where @ and 8 are arbitrary constants determined
by the initial conditions. The Schroedinger equa-
tion for the forced oscillator is

oY
—— —..——}— (%mw02x2 — Fox sinwt)v'/ ={fh—, (23)
at
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The lowest energy state for the free oscillator is
represented by the function exp(—3ae®x?) with
a?=muwo/f. Equation (23) may be solved in a
straightforward manner with the analog of the
function representing the lowest state of the free

oscillator. Assume a solution of the following
type:
Y =exp(—ia*x?)e®T, (24)

where k£ and T are functions of the time. The
substitution of (24) into (23) yields
— B2/ 2m)[ (—ax+1k)2—a?]T

+ (3mwox? — Fox sinwt) T

=ihli(dk/dO)x T+ (dT/dt)]. (25)

This equation must be satisfied for all x and T°;
accordingly,

dk/dt+1wok = (Fo/h) sinewt,
hdT/di= B2/ 2m)[ (mwo/%) +E2]T.
The solution of Eq. (26) is
k=A€_i”°t+[Fo/h(w2—w02)]

X (twy sinwt — w coswt).

(26)

27)

A is an arbitrary constant and may be complex.

VERNON W.

MYERS

The expression for In7T consists of a sum of
exponentials but is not given since it does not
need to be known to obtain the momentum or
kinetic energy.
The momentum operator —i%(d/dx) yields
—th(d/dx) exp (thx — $a’x?)
=% (k-+ia%x) exp (thx — a2x?).

The space average of this operator is

h f (b+iatx) expl[i (k—E*)x — atx? Jdx

f expli(k—Ek*)x—a®x? Jdx

- =15 (RLEY).  (28)

If 4 in Eq. (27) is written in terms of its real part
A, and imaginary part 4, the space average of
the momentum is

f) =7 (A r COSw0t+A i sinwot)

—[Fow coswt/ (e®—we®)].  (29)

The quantum-mechanical expression for the mo-
mentum has the same form as the classical
expression.

Simple Derivation of the Clebsch-Gordan Coefficients

R. T. SuArP
McGill University, Montreal, Canada

(Received June 15, 1959)

The three-dimensional angular momentum operator J takes a simple form when the operand
is a scalar function f(£,7) of the two complex variables £, 5; so do the angular momentum eigen-
states fa?(£m). Exploitation of this circumstance leads to a simple derivation of Racah’s formula
for the Clebsch-Gordan (vector addition) coefficients.

I. ANGULAR MOMENTUM OPERATORS 179 @ ifd 9
AND EIGENSTATES T, = ——(n—+£—), = —— g_)
2\ 8t oy 2\0t oy

HE essential property of the angular
momentum operators J., Jy, J. is their
commutation rule JXJ=:J. This property is

£
17 9 3
Jo= *5(55—5—775‘ - (1)
faithfully reproduced if we take! !

Tt o @ Tamiliar fact that unit odul . The operands of J here are understood to be
is a familiar fact that unitary unimodular mappings .
of complex two dimensional space can be made to corre- scalar functions f (E"’)) of the two Complex
spond to rotations of real three-dimensional space [see
for example H. Goldstein, Classical Mechanics (Addison-
Wesley Publishing Company, Reading, Massachusetts,
1950) pp. 109-1187. The form (1) for J; can be inferred from

the change df = —1ieJ;f when f is subjected to the mapping
corresponding to an infinitesimal rotation e about the
ith (x, ¥ or 2) coordinate axis.



