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One-Dimensional Hydrogen Atom

RopNEY LoupoN
The Clarendon Laboratory, Oxford, England

(Received June 19, 1959)

The quantum-mechanical system which consists of a particle in one dimension subjected toa
Coulomb attraction (the one-dimensional hydrogen atom) is shown to have a ground state of
infinite binding energy, all the excited bound states of the system having a twofold degeneracy.
The breakdown of the theorem that a one-dimensional system cannot have degeneracy is
examined. The treatment illustrates a number of properties common to the quantum mechanics

of one-dimensional systems.

1. INTRODUCTION

HE one-dimensional hydrogen atom con-
sists of an electron moving in the one-
dimensional potential —e/|x|. In the standard
treatment of this problem in the literature only
wave functions of odd parity are derived, i.e.,
wave functions which change sign under the
reflection x — —x.! It is clear that such functions
do not form a complete set since no function of
even parity can be expanded in a series of them.
Further it is a general result of the Sturm-
Liouville problem that for a one-dimensional
system the bound state of lowest energy has a
nodeless wave function,? the number of nodes in
the bound state wave function increasing by one
as we move up the energy scale from one bound
state to the next. The treatment mentioned above
gives only states with an odd number of nodes,
and half the states of the system are omitted.
In fact all the levels of the one-dimensional
hydrogen atom are twofold degenerate, having
an even and an odd wave function for each
eigenvalue, except for the ground state which
is an even state localized at the point x=0 and
having infinite binding energy. We have here an
interesting example of a case where the theorem
that the energy levels of a one-dimensional
system are nondegenerate is apparently violated.
The energy levels and wave functions of the one-
dimensional hydrogen atom will first be discussed
in a qualitative manner and we shall then give a
mathematical treatment. Finally the reasons for
the breakdown of the nondegeneracy theorem

1S, Fliigge and H. Marschall, Rechenmethoden der
Quantentheorie (Springer-Verlag, Berlin, 1952), p. 69.

2 E. C. Kemble, The Fundamental Principles of Quantum
Mechanics (Dover Publications, New York, 1958), p. 124
et seq.

will be considered. The present study was
occasioned by the importance of the one-
dimensional hydrogen atom wave equation in
the theory of the exciton in a high-magnetic
field.?

2. QUALITATIVE DISCUSSION

The wave equation for the system is

(2.1)
2m dx?  |x|

The solution of this equation for the regions
x>0 and x<0 is straightforward, but because
of the pole in the potential function at x=0, it
is not immediately obvious how the solutions in
the two regions should be joined together at
the origin. This difficulty may be resolved by
approaching the actual potential as the limit of
a nonsingular potential V(x), say, having the
form shown in Fig. 1. The Coulomb potential
has been rounded off in a symmetrical manner at
some small cutoff distance x; so as to remove
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FI1G. 1. The modified Coulomb potential V(x)
and its three lowest eigenstates.

8 R. Loudon and R. J. Elliott (to be published).
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650 RODNEY
the singularity. We shall eventually allow x, to
tend to zero to reproduce the original potential.
The detailed form of the rounding off does not
affect the conclusions reached about the one-
dimensional hydrogen atom ; this will be demon-
strated in Sec, 3 by considering two types of
cutoff.
The wave equation now has the form:

h* d*
——=[V@-EW.

(2.2)
2m dx

The forms of the three lowest bound state wave
functions are sketched with the potential in
Fig. 1. They may be derived by simple quali-
tative considerations of the solutions of the wave
equation and are roughly similar for any non-
singular binding potential.* The ground state
has an even nodeless wave function and the
excited states are alternately odd and even. We
wish to consider the state of affairs as the cutoff
distance xy is reduced to zero, when V(x)
becomes very large in the region of the origin.
For odd states ¢ is zero at the origin so that the
right-hand side of (2.2) is well behaved as x is
decreased, and there is no important change in
the character of the odd state wave functions
as we proceed to the limit xo=0. However in the
case of even states ¢ is finite at the origin so
that d%/dx? must be very large there, its
magnitude increasing as x, is decreased. In the
limit xy=0, when the Coulomb potential has
been restored, d%/dx? is infinite at the origin so
that the even wave functions have discon-
tinuous slopes at x=0. The functional form of an
even state in the regions x>0 and x <0 becomes
the same as that of the odd state which lay next
below it in the modified potential but the solu-
tions in the two regions are joined together at
the origin to form a function of even parity
(see Fig. 5). The odd and even states become
degenerate in pairs in the Coulomb limit. The
zero in an even wave function at x =0 should be
regarded as a double node since it is formed in
the limit by the coalescence of two distinct
nodes.

An exception to this behavior occurs for the
ground state. As ¥ (x) becomes large and negative

4L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book
Company, Inc., New York, 1955), p. 32.
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close to the origin, E must also become large
and negative in order that the magnitude of
d%/dx* shall not be too large for the ground
state wave function to have zero slope at x=0.
The wave function therefore becomes concen-
trated more and more in the region of the origin
and in the limit when the original potential is
restored, the ground state has infinite binding
energy and its probability density is a delta
function 8(x).

The aforementioned qualitative statements
will now be justified by solution of Eq. (2.1) and
of Eq. (2.2) for two types of cutoff.

3. MATHEMATICAL TREATMENT

We look for bound state (i.e., negative energy)
solutions of the wave equation (2.1) and intro-
duce a dimensionless quantity « by taking

E=—h/2madd?, (3.1)
where a¢ is the Bohr length
ao="h/me. 3.2)

It is convenient to change the independent
variable in Eq. (2.1) from x to

z2=2x/aa,, (3.3)
whereupon the equation takes the form:
dy 1 a
gt y=0 (3.4)
dz? 4 |z|

The wave equation has therefore been reduced
to Whittaker’s form of the confluent hyper-
geometric equation.® Consider first the region
2>0. Equation (3.4) has two independent
solutions—one of which diverges like 272 exp(32)
for large 2z, while the other has a convergent
asymptotic form tending to zero as z* exp(—32).
For a bound state we clearly require the solution
of Eq. (3.4) which tends to zero as z tends to
infinity, and in Whittaker's notation this
solution is W, ;(2). It is convenient to write
down the power series expansion of this function
which may be easily obtained by solution of

5 B, T. Whittaker and G. N. Watson, Modern Analysis
(Cambridge University Press, New York, 1927).
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Eq. (3.4) using the method of Frobenius:$

—3z
Wes(8) =\ 5 \Fy(1 —a,2; 2)
T'(—«
X[logz+¢(1—a)—¢ (1) —¢(2)]
1 ® 1_ T
S _E__iArzr+1}’ (3.5)
a ~=1ri(r41)!
where
r—1 1 1 1
A,=z[ — ] (3.6)
w=0ln+1—a nt+l nt2
and
I'(c+r)
€)= . 3.7
T{c)

The function ¢(s) is the logarithmic derivative
of the gamma function

d
vis)= ;[logl‘ (O]=T"(s)/T(s)  (3.8)
S

and (F1(1—a, 2;2) is just the usual confluent
hypergeometric function:

Fil—a2; —f(lua)w 3.9)
1 1( —aQ, ,Z)-— = (2)' ; (.

It is clear from the series expansion (3.5) that
We,3(2) is finite at 2=0 but that it normally has
infinite slope at this point and thus is usually
unsuitable for a wave function. An exception to
this behavior occurs, however, when o« is a
positive integer, for in this case both I'(—a) and
¥ (1 —a) become infinite and we must consider the
limit of W, ;(2) as @ tends to a positive integer N.
Now as a — N,

¢{(l—a) > 1/(a—N). {3.10)
Further we may write
I'(—a)=T(—a+N+1)/
[—a(l—a)---(N—a)]. (3.11)
Hence:
Lim ¥ (1—a)/I'(~a)
= (-1 (N+1) (N=1,2,--:). (3.12)

8 Erdélyi, Magnus, Oberhettinger, and Tricomi, Higher
Transcendental Functions (McGraw-Hill Book Company,
Inc., New York, 1933), Vol. 1, p. 261.
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All the terms in the numerator of Eq. (3.5)
remain finite at positive integral « except for
¢ {1 —a) so that

Lim We,(z) = (—~ DT (NV+1)

Xe¥z Fi(1—~N,2;28). (3.13)

The confluent hypergeometric function appear-
ing in this equation is simply related to an
associated Laguerre polynomial as follows:

1F1(1=N, 2;2)= —Ly'(3)/N!N, (3.14)

so that we have finally:

L_lgl We3(2) = (—1)¥e t22Ly' (2)/N. (3.15)

The function on the right of the above equation
is well behaved in the region of the origin and
is a satisfactory bound state wave function. We
have therefore shown that an acceptable bound-
state solution of (3.4) can be formed only when
a is a positive integer. The bound-state energies
as given by Eq. (3.1) are just the Balmer
energies, showing that the one-dimensional and
three-dimensional hydrogen atoms have common
energy levels.

For the case 2>0 we have shown that the
wave functions of the one-dimensional hydrogen
atom are

¥ =Be 2Ly (2),

z2=2x/Naq, (N=1,2,--.), (3.16)

where B is a normalization constant. Similarly
for z<0 it may easily be shown that:

¥ =_Cet*sLy'(—2), (3.17)

C being another normalization constant.

We now require to join together the two
solutions, Egs. (3.16) and (3.17), at the point
2=0, Since the potential of the problem is
invariant under the reflection x — —x, we may
insist that the wave functions be either even or
odd functions of x. Now Egs. (3.16) and (3.17)
have finite slopes at 2=90 and, since the potential
has a singularity at this point, there is some
ambiguity as to how the solutions should be
joined together. In particular it is not clear
whether or not even states are permissible. This
dificulty may be resolved as was suggested
in Sec. 2 by considering the one-dimensional
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hydrogen atom potential as the limit of a non-
singular potential function, a process which also
shows that the ground state of the system has
been missed in this analysis.

Consider then the problem with a slightly
different potential, viz.

—é*/(a+x]),

where a is a positive quantity very much smaller
than the Bohr length @y, and which we shall
eventually allow to tend to zero so as to re-
produce the original potential. The shape of the
function is shown in Fig. 2. For large |x|, Eq.
(3.18) is little different from —e?/|x| but the
new potential remains finite at x=0 instead of
having a pole.

The wave equation is still of the form (3.4)
but the variable is now

=2(a+x)/aa,

2=—2(a—x)/aa,

(3.18)

for x>0,

for x<0. (3.19)

There is therefore a lower bound of 2a/aa, to the
range of values which |2’| can take. The modifi-
cation we have made to the potential is such
that the potential energy of the electron is
higher at all points and we may therefore expect
the energy levels of the system to be raised
slightly above the Balmer energies. Referring to
(3.1) we see that the values of a for which
eigenfunctions can be formed will be slightly
higher than the positive integers. This may be
expressed conveniently by defining the quantum
defect d» of a level to be the difference between
the value of « to which it corresponds and the
integer N close to a:

dx=a—N. (3.20)

\V

FIG. 2. The potential described by Eq. (3.18).
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For a<a, we shall have 6x<1, and 5 — 0 as
a— 0.

The bound-state wave function is still
W, ;(12'|) given by (3.5). The quantity a is not
now integral so the function has infinite slope
at 2’ =0, but this does not matter since the point
2’=0 is not included in the physical domain of
#'. The solutions for positive and negative x can
be joined together at x=0 to form both even
and odd wave functions. For an odd state we
require

W.,,%(Za/aao) =0 (3.21)
while for an even state,
d
—[We, (") 1=0, (3.22)
ds’
s}
4 EVEN
3
3
2
-4 obD
&> .08 a/o ,‘;

Fic. 3. Variation with a/a, of the quantum defects of
the two states whose quantum numbers o tend to unity
as a/ay tends to zero. The even-state quantum defect falls
to zero very steeply close to the origin.

when evaluated at 2’ =2a/aay. These conditions
give the eigenvalues of the system for a given
value of a. Using Eq. (3.5), we keep only the
terms which are dominant when z=2a/aq, is
very small and « is close to a positive integer.
The eigenvalue conditions then become:

Odd state:

v(1—a)2a/agy—1/a=0. (3.23)
Even state:
log{(2a/aao)+¢ (1 —a)=0. (3.24)

Using Egs. (3.10) and (3.20), the quantum
defects are given by
Odd state:

5N=2(l/ao. (3.25)
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Even state:
dn = —[log(2a/Na¢) I

In Fig. 3 we show how the quantum defect &,
varies with a/a, for both the odd and the even
states. 8y behaves in a similar manner for the
other values of N. The curves were calculated
using the complete expression (3.5) for W, ;(2)
and not the approximate Egs. (3.25) and (3.26),
which hold only at the lower end of the a/as
scale, where §,;<1. :

In addition to these series of odd and even
states having their quantum numbers a close
to the positive integers, there is another state
having o close to zero. For such a value of «,
¥(1—e) is no longer an important term in (3.5)

(3.26)

A
61 G

-4

F1G. 4. The two wave functions for which @ tends to
unity as a/ao tends to zero. The value of a/ao here is 0.1
and the quantum defects for the odd and even states are
0.14 and 0.50, respectively.

and 1/a becomes the dominant term in «. Hence
for this case the eigenvalue conditions (3.21)
and (3.22) become

Odd state:
(2a/aap) log(2a/eas) —1/a=0. (3.27)
Even state:
log(2a/caq)+1/2a=0. (3.28)

Equation (3.27) has no solution for a<a,, so
that there is only one state having «<<1. This
even state is the ground state in the potential
(3.18). Since for N=0, a is equal to the quantum
defect &y, Eq. (3.28) can be regarded as an
equation for the quantum defect of the ground
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F16. 5. The two wave functions having the first Balmer
energy. For positive x the wave functions are super-
imposed. The wave functions of Fig. 4 transform con-
tinuously into the above pair as a/ao changes from 0.1 to
zero,

state. It may be solved by iteration, a first
approximation being obtained by removing the
o from the logarithmic term.

Since the quantum defect for the even state is
always larger than that for the corresponding
odd state (see Fig. 3), the states alternate
between even and odd as we move up the energy
scale with an even state lowest. Figure 4 shows
the odd and even states for which a —1 as
a/aq— 0, for the particular value a¢/a,=0.1. A
rather large value of @¢/a¢ has been chosen so as
to show clearly the shape of the even wave
function in the region of the origin.

We now wish to obtain the solution to the one-
dimensional hydrogen atom problem by taking
the limit ¢ — 0. We observe that however small
a value of ¢ we may choose, it is still possible
to find values of « such that (3.23) and (3.24)
are satisfied, the required values of o tending
to the positive integers as @ — 0. Hence in the
limit ¢ =0 there exist pairs of degenerate odd
and even states having the Balmer energies,
whose wave functions for positive and negative
x are given by Egs. (3.16) and (3.17), respec-
tively, joined together at x =0 to form a function
of the correct parity. Figure 5 shows the pair
of wave functions having the Balmer energy
corresponding to N=1. The final normalized
expressions for the wave functions are:

Odd states:
v=[2/a’N*(N!)*]t

Xexp(—|x|/Nao)xLy'(2]x]|/Nao). (3.29)
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F16. 6. The truncated Coulomb potential.

Even states:

y=[2/alN* (N}
Xexp(—|x|/Nao)|x|Ln'*(2|x|/Nao). (3.30)

Remarks similar to the aforementioned apply
also in the case of the ground state. As ¢ — 0,
a — 0 so that in the limit ¢ =0 the ground state
has infinite binding energy. It is easily seen by
inspection of (3.4) that the ground-state wave
function is exp(—%]2|). The normalized ground-
state wave function is therefore,
Ground state:

y=Lim exp(- |x|/aac)/(aan)t  (3.31)
We note that [¥|2=35(x) so that the ground state
wave function is localized at the origin.

These results have been derived by modifying
the one-dimensional hydrogen atom potential
to (3.18) and later taking a limit to restore the
original wave equation. Other types of modifi-
cation to the potential may be used and as an
example we consider briefly the potential form
shown in Fig. 6, where the Coulomb potential
has been cut off at radius x to form a well of
depth —e*/xo for |x| <xo. We shall eventually
take the limit xo— 0. In the exterior region
|%| >xo the solutions of the wave equation are
just the functions W, ;(z) as shown. In the
interior region [x]| <xo the wave equation is

B dy e
—— = Ey (3.32)
2m dx®  xo
This has both odd solutions
2m e\ 1}
¢~sin[————(E+——)] x (3.33)
h Xo

LOUDON

and even solutions

e 5o

The solutions in the two regions are joined up
by matching logarithmic derivatives at the
boundary x=x. For the interior wave functions
for very small x, we have

Odd states: At x=ux,,

(3.34)

1dy
=— 3.35
(4/ dx) ( )
Even states: At x =x,,
1d 2
(— —\—0-) =—— (3.36)
¥ dx @o

The logarithmic derivatives of the exterior
wave functions at x=x¢ may be calculated by
using the series expansion (3.5) and retaining
only the dominant terms for small xo and e
close to an integer. Equating the logarithmic
derivatives at ¥ =x, then gives equations similar
to (3.23) and (3.24), from which quantum
defects can be calculated. It is straightforward
to show that the quantum defects for the even
states are the same as for the previous potential
(3.18) being given by Egs. (3.26) and (3.28)
with ¢ replaced by xo. For the odd states the
quantum defect varies quadratically with x,,
instead of the linear dependence on a for the
previous potential, being given by
Odd states:

6N=2x02/a02. (337)

The conclusions reached about the energy
levels of the one-dimensional hydrogen atom
are, however, the same in both cases.

4. THE NONDEGENERACY THEOREM

We have seen that, apart from the ground
state, the levels of the one-dimensional hydrogen
atom are twofold degenerate. The usual proof
of the theorem that a one-dimensional system
cannot have degenerate states proceeds as
follows. Let V(x) be the potential and E the
energy eigenvalue which is common to two wave
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functions ¢, and ¥2. Then

B d¥,

—— ——+ V(x)¢1=FEyy, (4.1)
2m dx?
B di,

_ + V(x)Y2=Ey,. (4.2)

2m dx?

Multiply Eq. (4.1) by ¥, and (4.2) by ¢: and
subtract one from the other to obtain

1 dWs
r——¢1——=0, (4.3)
dx? dx?
that is
ar ayr ds
—| yo——y ———]=0. (4.4)
dx[ 2dx 1dx
Integrating, one finds that
A1 dy
y— —1—— = constant. (4.5)
dx dx

For large x, ¢, and ¢, must vanish if they are to
represent bound states, so the constant in (4.5)
must be zero. At points where ¥y and ¢, are
nonzero, we may divide by ¥ /: to obtain

/= dys/ Y. (4.6)
Integration of this equation leads to
Y1=By,, 4.7n

where B is a constant. [t therefore appears that
Y1 and ¢ 5 are not independent and the statement
that a one-dimensional system can have no
degeneracy follows. However, Eq. (4.6) may
not hold at points where ¢¥y: is zero and it
follows that Eq. (4.7) may hold only between
adjacent zeros of Y1, The possibility exists that
the value of B may change as we pass through
a zero of ¢, and ¢¥2. Now such a change in B
implies that ¢; and ¢, cannot both have a

655

continuous finite slope at the zero and, since the
wave functions must satisfy the wave equation,
(4.1) or (4.2), this can only be true if the po-
tential V(x) has a singularity at the point where
Y is zero. The nondegeneracy theorem is
therefore not necessarily valid for a potential
which has singular points.

This is just the case for the one-dimensional
hydrogen atom. The even wave functions have a
discontinuity in slope at the origin and this is
associated with the fact that the potential of the
problem has a pole at x=0. As we move along
the x axis the constant B in Eq. (4.7) changes
from 41 to —1 when we pass through the origin
(see Fig. 5).

Another more commonly quoted example of a
one-dimensional system with degeneracy is that
of two potential wells separated by an infinite
barrier, or separated in space by an infinite
distance. Corresponding states in the two wells
have equal energies, so that all the levels of the
total system are twofold degenerate. The
breakdown of the nondegeneracy theorem in
this case is due to the fact that if ¥, and ¢, are
degenerate wave functions then ¥qy: is every-
where zero, due to the infinite barrier or the
infinite separation. Equation (4.6) therefore
does not hold anywhere and the theorem cannot
be proved. For a finite barrier and a finite
separation of the potential wells the degeneracy
is lifted and the nondegeneracy theorem there-
fore only breaks down when the finite potential
is taken to certain infinite limits. In this respect
there is a similarity between the two cases we
have considered, in which a one-dimensional
system has degenerate energy levels.
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