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Thomson Atom

HENRY ZATZKIS
Newark College of Engineering, Newark, New Jersey

(Received January 2, 1958)

The historical development leading up to the Rutherford-Bohr model of the atom is briefly
surveyed. The atomic model, suggested by J. J. Thomson before Rutherford’s model, is in~
vestigated. The quantization shows that the bound states bear a marked resemblance to those
of the hydrogen atom. However, the states are in general nondegenerate. Thus, the Thomson
atom could not have survived the spectroscopic evidence even if no Rutherford scattering

experiments had been performed.

HISTORICAL BACKGROUND

URING the nineteenth century one of the
principal goals of theoretical physics was
the construction of a mechanical ether theory.
This ether should not only explain the propaga-
tion of light, but also, as a by-product, give an
account of the atomistic structure of matter.
Kelvin was perhaps the main protagonist of
these endeavors. Helmholtz', C. A. Bjerknes’,
and his own hydrodynamical researches led him
to the concept of the ether as an ideal fluid and
the atoms as vortices embedded in it. The in-
destructibility of the vortices would account for
the conservation of matter, and the hydro-
dynamical actions between them would explain
the interatomic forces. The atoms thus consisted
of the same substance as the ether but were at
the same time different from it in structure, just
as the knot in a string is different from the rest
of the string but still of the same material.
With the advent of Faraday's and Maxwell’s
electrodynamics, the mechanical models were
gradually discarded. Instead, the aim now be-
came to explain mechanics in terms of electro-
dynamics. Probably the first atomic model, held
together by electric forces exclusively, was sug-
gested by J. J. Thomson. He developed his ideas
on this subject in two papers in the Philosophical
Magazine, in December, 1903, and March, 1904.
The basic assumption was that the atom con-
sisted of a homogeneous, positively charged
sphere in which were imbedded smaller negative
charges, the whole system being electrically
neutral. Thomson calculated the possible arrange-
ments and motions of the negative charges which
rendered the configurations stable. Thus Thom-
son needed no additional hypotheses to explain

why electromagnetic radiation of the accelerated
charges inside the positive nucleus would not
lead eventually to a collapse of such an atomic
system.

Subsequently Thomson's students, H. Geiger
and E. Marsden,! carried out a series of careful
measurements on the scattering of a particles
in matter. In 1910 Thomson attempted to give a
theoretical explanation of their findings.?

He? assumed “multiple scattering’’ to be the
cause of the observed results, i.e., the deviations
of the « particles from their original paths were
assumed to be the resultants of a large number of
small random deviations, the average deviation
due to passing through one atom being only a
rather small fraction of a degree.

The observations, however, showed also large
deviations up to angles of 150° away from the
incident direction. Although the number of these
deviations was small, it was much too large to
be explained solely on the basis of pure random-
ness. This anomaly induced Rutherford to pro-
pose his theory of *‘single scattering” 4 according
to which the large deviations are due to single
collisions with atoms and not to the summation
of a large number of small deviations. In order to
account for these large deviations, an intense
field in the atom was required, and this in turn
led Rutherford to propose his well-known theory
of the planetary atom.

1 Proc. Roy. Soc. (London) A82, 495 (1909), and AS83,
492 (1910).
(1;1Ji))1' Thomson, Proc. Cambridge Phil. Soc. 15, 465
% See, e.g., A. Sommerfeld, Alombau and Spekirallinien
(Friedrich Vieweg and Sohn, Braunschweig, Germany,
1919), first edition, p. 62; or H. A. Wilson, Modern Physics
(Blzazckie and Son Limited, London, 1941), third edition,

p. 221.
4 Phil. Mag. 21, 669 (1911).
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About the electrodynamic stability of his
atomic model, Rutherford remained silent. It is
conceivable that Rutherford’s model would not
have gained such ready acceptance had it not
been for Bohr’s synthesis of the planetary fea-
tures and Planck’s quantum theory. The brilliant
success in the explanation of the spectrum of the
hydrogen atom removed all doubts.

It was this particular aspect that prompted
the author to investigate the spectrum of the
simplest type of a Thomson atom (one single
negative charge imbedded in the positive nucleus)
by quantizing it. It turns out that the lowest
energy levels of the hydrogen atom are missing,
and furthermore that all states are nondegenerate
and thus unable to explain the observed multiplet
structure of the spectral lines. Thus, even in the
absence of any scattering experiments, spectro-
scopic evidence alone would have been sufficient
to rule out a structure of the atom along the
lines of ideas suggested by Thomson. Yet,
Thomson’s model was the immediate forerunner
of Rutherford’s model, and in fact inspired it.
Thus, it will retain an important position in the
history of the evolution of our present physical
concepts. As far as the writer is aware, no previ-
ous attempt has been made to quantize the
Thomson atom.

MATHEMATICAL TREATMENT

Before Rutherford proposed his atomic model,
J. J. Thomson, as noted above, made the sug-
gestion that the atom may consist of a uniformly
charged positive sphere with an equal negative
point charge oscillating in and about the positive
sphere. It is interesting to discover that the
Thomson atom could not have survived the
spectroscopic evidence even if no scattering
experiments had been performed. Some of the
principal features of the Thomson model can be
demonstrated by solving the Schrodinger equa-
tion for a potential well corresponding to this
view of the atom.

If the charges are denoted by e and the
radius of the nucleus by R, the potential func-
tion becomes in this case

e 3e?

= e —

2R®
V=—é/r

r <R,
2R (1

r>R,
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where 7 is the radial distance from the center of
the nucleus.

Schrodinger Equation and its Solution

When the Schrodinger equation is written
down in spherical coordinates and the angular
momentum operator squared is replaced by
1(}4-1)#%, we obtain, for the radial wave equation,

dif 2d4f 2M I{i+1
e M P PR e PR e
rdr 7 r

dr?

where M is the mass of the negative charge and
1=0,1,2,3---.The cases I =0and /0 have to be
considered separately since they behave quite
differently.

Case I=0

For the case /=0 the differential equation
reduces to

A e vyy=0. @
—f——A—"{E - V(r) ]f=0.
art rdr #®
In the region 0 <r <R, this equation reads
d&2f 2df [2ME 3Me Me
— ——-—+[ + —_ r’]f=0. 4)
drt rdr 72 R hR3
If the following definitions are made,
gn)=rf(r),
E'=E+ (3¢/R),
w?=¢?/ MR*=the classical angular fre- (5)
quency in the region where the po-
tential is harmonic,
we obtain
d*g (2ME M2
e ©
dr #? h?

This equation is identical with that of the
linear harmonic oscillator. Its general solution®
can be written down at once and we obtain

_exp (—Ar2/2)
N 7

X[CiF(a; 3; M)+ CaAlrFla+%; 2, M) ],

% See, e.g., S. Flugge and H. Marshall, Rechenmethoder
der Quantentheorie (Springer-Verlag, Berlin, 1952), second
edition, Part 1, p. 62.
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where

a s a(et+l) 2
F(a;0;2)=14+-—+ —
b1l b(b+1) 2!

)

The constants C; and C: are arbitrary constants
of integration. Despite the singularity at the
origin the function is square integrable and is
therefore admissible.

In the region R <r < « the radial differential
equation is

d&f 2df 2M e
— - '-—+~——-[E+‘jf
ar* rdr #

4

=the hyperconfluent function.

=0. (8)

The only normalizable solution® is
fr)y=e " F(1—7;2;2yr)
r=Me/vh
vi=—2ME/#?,

)
¥>0.

The other linearly independent solution tends
to » as r — « in any case and cannot be nor-
malized. Even this solution above will diverge
asymptotically as the function " unless the
function F(1—1;2; 2yr) becomes a polynomial
and this will be the case if

(n,=0,1,2,3--2). (10)

l—g=—n,

The above condition yields the quantized energy
values
E,=—Me/2hn?,

where #=n,+1 and

f=evF(1l—n;2; 2yr). (11)

In other words the energy levels are the same as
those of the hydrogen atom, except that a finite
lower number is cut off since E, must satisfy
the inequality

3 é

<E..
2R

& See reference 5, p. 108,

(12)
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If the expression for E, is substituted in this
equality one obtains

" ZE(MR/s)*. (13)

If R is chosen of the order of 10~!2 the left side
of the inequality is of the order 102 so that all
integer values are allowed; if R is of the order
10-% the left side is of order unity so that the
number of levels cut off in this case is small.
We must finally determine the constants Ci
and C; from the two boundary conditions so that
the radial function and its derivative must be
continuous at r=R. In this connection the
property of the hyperconfluent function

(@/dz)F(a;b;3)= (a/b)F(a+1;b+1;2) (14)

will be very helpful. If the following abbrevia-
tions are introduced,

A=F(a; 5; \RY),

B=F(a+%; % MR,
D=F(1—n;2;2vyR),
N=F(a+1;§: R,
S=F(a+3%; §;\RY),
T=F(2-—n;3;2vR),

(15)

the boundary conditions then can be expressed as

4
exp(—KRz/Z)[QE-l— CzMB] =e~7RD

and

exp( —7\—?) [ Cl[4MN_A(—I%+>\)]
+C2)\*R(ZS(ZG:_ D —B) }

=ve-v[(1—m)T—D].

(16)

These equations can now be solved for C; and
C: and we will have thus constructed the un-
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normalized wave functions for the case /=0. To
normalize these functions would require numeri-
cal values for the hyperconfluent functions. Since
these are not tabulated, only a numerical inte-
gration would yield the normalization factor.
The solution for C; and C; can be easily written
down as

Ci=U/V, C=W/V, a7

where

AR?
U=t exp( +—2‘~—’YR)

[ D, B
X 2(2 1
[v[(l—n)T—D], xR(ifj;)S-B)
. 3
(18)
AR?
W=exp(+~;~~—yR)
|r A/R, D )
e A(I—H\) [A-m)T D‘ 19
aN—A{ — , - -
[ = v n) |
(2a-+1) AB
V=)\*[2AS>\———§—~-—4BMN+7€—2—]. (20)

Case 10

In this case the differential equation for the
region 0 <7 <Ris

&f 2df [ZME’ M I(+1)

=0; (21

art rdr #? #? 72 ]f )
the two independent solutions behave near =0
like #* and r~@+D_ Only the first solution can be
normalized. The complete solution for the region
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0 <r <R can be written

f(r)=exx>(~§§)

—l+iy
X[Clr“”“’F(————2-; 3= W)

2
IH+3—u
+C2)\*r‘F( 5 i 144, M“)],
where
p=E/he. (22)

The first term in this expression becomes so
strongly singular near =0 that it is no longer
square integrable. Therefore C; must be put
equal to zero. But then we have only one con-
stant C; at our disposal, and this is not sufficient
to match boundary conditions at r=R. From
this we must conclude that no wave function
with 1540 exists which can satisfy the necessary
conditions. Since the term I(J4+1)/7* in the
differential equation corresponds classically to a
centrifugal force, one can see that the negative
charge can only oscillate linearly through the
center. Any centrifugal force will make the
system unstable. The Thomson atom would
show no Zeeman splitting in a magnetic field and
would lead to incorrect occupation numbers for
the main energy levels in the atoms.

CONCLUSION

The Thomson atom has the same energy states
as that of the hydrogen atom except that the
lowest state may not be given by =1 and de-
pends on the radius of the spherical positive
charge distribution. Furthermore all states are
nondegenerate since no states with /520 are
allowed. The description of the nucleus according
to Thomson is very incomplete so much so that
even the point nucleus gives a more valid account
of the extra nuclear behavior of the electron.

The atomic physicist has had fo resign himself to the fact that his science is but a link in the
infinite chain of man's argument with nature, and that it cannot simply speak of nature “in
itself.” Science always presupposes the existence of man and, as Bokr has said, we must become
conscious of the fact that we are not merely observers but also actors on the stage of life—~W. HEISEN-

BERG, The Physicist's Conception of Nature.



