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Rectangular Potential Well Problem in Quantum Mechanics

PauL H. PITKANEN
Department of Physics, University of South Carolina, Columbia, South Carolina

(Received June 3, 1954)

The one-dimensional rectangular potential well problem is one of the standard examples
used in courses to illustrate quantum-mechanical properties. It has also been of value in the
study of nuclear energy states. However, it is necessary to resort to graphical or numerical
procedures at the last if one desires explicit values for the energy levels, It is the purpose of this
article to point out a simpler and more perspicuous method of graphical solution than those

used at the present time.

E shall use the commonly accepted nota-
tion for the Schrédinger equation in this
discussion. The potential is represented by

V) = { —Vefor (—a<x<+a)

0 otherwise.

It is convenient to set the energy E equal to —e¢,
since only the bound states are to be considered.
Note that the range of ¢ is (0Le<Vy). The
Schrédinger equation then assumes the form
&y 2m
4+ (Vo— =0 (—a<x<-+a)
dx*  #?
2y 2 n
m
— ey =0

—— (1] 20).

The solution of these equations is readily ob-
tained and will not be discussed here. The im-
position of continuity requirements on the
solution leads to the equations

(even solutions)

Vo—e¢ b 2ma? t
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F1G. 1. Odd Solutions. Intersections 1 and 2 correspond
to true roots of Eq. (3b); the intersection in quadrant III
does not correspond to a true root.

(odd solutions)

Ve—e1} 2ma’ i
[ ]cot[ (Vo—e)] Y
€ n?

(2b)

These equations must ordinarily be handled
graphically or numerically, if one wishes in any
particular case to obtain explicit values for the
energy levels.

GRAPHICAL SOLUTION

Both Bohm and Schiff' give methods (not
the same) for extracting the roots of Eqgs. (2).
These references should be consulted for details.
We propose to add here another method to the
list. For this purpose, it is convenient to trans-
form Eqgs. {2) somewhat. Let

a=a[2mv°]}, n=a[1—¢/Volh

ﬁZ
Then, using well-known trigonometric identities,
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F1G. 2. Even Solutions. Intersections 1 and 2 correspond
to true roots of Eq. (3a); the intersection in quadrant 1I
does not correspond to a true root.

1 See, for example, D. Bohm, Quantum Theory (Prentice-
Hall, Inc., New York, 1951), p. 247-255; or L. 1. Schiff,
Quantum Mechanics (McGraw-Hill Book Company, Inc.,
New York, 1949), p. 36-40.
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Fic. 3. All Solutions. Intersections 1 and 3 correspond to
even roots; intersections 2 and 4 correspond to odd ones.

we obtain
(3a)
(3b)

(even solutions) cosn==1n/c
(odd solutions) siny= 44/a.

For the even solutions the procedure is to
plot y1=cosy vs #. Then plot y.=+9/avs 7 (two
straight lines). The roots may be found at the
intersections. One restriction must be observed:
from Eq. (2a) it is clear that real roots will occur
only in the 1st, 3rd, 5th, etc., quadrants, in
which regions the cosine is, respectively, (4),
(=), (+), etc. Accordingly in the 1st, S5th, 9th,
etc., quadrants, the roots are taken using
Yyo=-+n/a; in the 3rd, 7th, etc., use y.= —g/a.
For the odd solutions, plot y,=sinnpvsn and
yy=-tn/a. Again the intersections give the roots.
A similar observation to that given above re-
quires that we use y2=+415/a in the 2nd, 6th, etc.,
quadrants and y,= —n/a in the 4th, 8th, etc.,
quadrants. The remaining quadrants in each
case do not vield true roots. Note that since
(0<e<Vy), it follows that (0<7<a) and
0<y:<+1) or (—1<9,<0). The foregoing
analysis results in an elegantly simple graphical
procedure. At the risk of seeming repetitious we
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F16G. 4. All Solutions. This is the same as Fig. 3 with all
quadrants superposed. The numbers and labels are
unchanged.

PAUL H. PITKANEN

summarize these results.

(even): Plot y1=cosy
y2=kn/a
(straight lines from the origin to the points
(n=a, y2=+1), (9=a, y2=—1). Now observe
that
0<9<7/2: use (+4) sign,
7/2<y9<7: no solution,
r<n<3%/2:
3r/2<9L2x:
etc.

(odd):

use (—) sign,
no solution,

Plot y,=siny

y2=ky/a.
Observe that

0<9<w/2: no solution,
r/2<n<w: use (+) sign,
7 <7<3r/2: no solution,

37/2<9 L 27
etc.

use (—) sign,

The method is illustrated in Figs. 1 and 2.

It is obvious from the drawings that further
simplication is possible. We observe that separate
sine and cosine curves are not essential. The
straight lines of negative slope are also un-
necessary. Accordingly, we combine the two
systems as shown in Fig. 3.

A final pruning may be made on Fig. 3, which
increases the accuracy of the plot. The repetition
of the cosine curve in Fig. 3 can be dispensed
with as shown in Fig. 4.

If we let n: be the value of n measured along
the abscissa which corresponds to the kth root,
then the energy levels are given by

78
€= Vo(l"""‘z‘ . (4)

[44

Alternatively, the energy may be measured from
the bottom of the well, in which case

ek' = Wo — €= I/vo’m;z/a2 = thﬁ/thﬂ. (5)

Although we have used four figures in this dis-
cussion, it should be noted that only one is
required in actual computation. This may be
either Fig. 3, Fig. 4 or a suitable hybrid. The



RECTANGULAR POTENTIAL WELL PROBLEM

advantages of this method over the ones found
in most textbooks may be summarized as follows.

1. The functions to be plotted are of consider-
ably simpler character.

2. The cosine plot is the same for all wells,
and for particles of different masses. The details
of the well and the particle appear only in the
constant

a=a[2mV,/H2]},

and this affects only the slope of the straight
line. This feature makes it easy to discuss the
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dependence of the energy levels on the well
parameters with only one graph.

3. It is easy to make rough sketches of the
graphs which will exhibit the essential qualitative
features of the problem.

It has been the experience of the author and
the students in his classes that the time saved
in working typical problems using this procedure
is by itself well worth such additional effort as
may be required to digest the preliminary analy-
sis on the character of the roots.

The Hydrostatic Paradox: Phases I and I

Laurence E. Dobp
University of California, Los Angeles, California

{Received January 11, 1954)

The term hydrostatic paradox is likely to suggest the classical experiment of “Pascal’s vases.”’
In a demonstration with this apparatus the observer’s attention is centered upon the vertical
direction, specifically the common vertical depth of liquid in the different branches of the
container, with their varying cross sections and volumes. But the term properly has a broader
connotation. Fully as striking is the hydrostatic paradox seen in the fact that the horizontal
thrust of the water against a dam is independent of the volume of water impounded, and
dependent only on its depth at the barrier. To differentiate sharply between these two aspects
of hydrostatic paradox, the terms ‘Phase I'" and '“Phase II"" are proffered. The two aspects
are discussed in the paper. A simple projection cell is described for demonstrating Phase II
in a direct manner, corresponding to the demonstration of Phase I with Pascal’s vases. Con-
sidered also is the involvement of hydrostatic paradox with Archimedes’ principle, and in

capillary tubes.

INTRODUCTION

HE horizontal thrust on a dam by the water

behind it depends only on its depth at

the contact face. It does not at all depend on the

volume impounded, except as that volume, for a

given contour of bed of the reservoir, determines
depth at the barrier.

Being paradoxical, this horizontal effect
belongs under the general subject of hydrostatic
paradox. Although it is due to the behavior of
static liquid pressure, it is at the same time
different from the paradox as usually demon-
strated with ““Pascal’s vases’ (see below), where
the effect has to do with the vertical direction.

In demonstrations therefore it seems desirable
to particularize as to terms. The writer suggests:
for the vertical effect, ‘‘Hydrostatic Paradox,
Phase I'’; and for the horizontal, *Hydrostatic

Paradox, Phase IL.” In each of these situations
the effect is independent of horizontal dimension,
and of the shape of vertical cross section below
the free surface of the static liquid. In both of
them the paradoxical character rests on the
observer's natural tendency to regard volume, or
weight, instead of pressure, which depends
directly on depth and only incidentally on
volume.

A main purpose in this paper is to describe
simple equipment for showing Phase II. How-
ever, for a broader consideration of hydrostatic
paradox in general, and for drawing a com-
parison, Phase I will be discussed briefly before
Phase II is treated in more detail. Following
these discussions we shall consider hydrostatic
paradox involved with Archimedes' principle
and then with capillarity.



